
Asymptotic Expansions and Two-Sided 
Bounds in Randomized Central Limit 
Theorems 

Sergey G. Bobkov, Gennadiy P. Chistyakov, and Friedrich Götze 

Abstract Lower and upper bounds are explored for the uniform (Kolmogorov) and 
.L2-distances between the distributions of weighted sums of dependent summands 
and the normal law. The results are illustrated for several classes of random variables 
whose joint distributions are supported on Euclidean spheres. We also survey several 
results on improved rates of normal approximation in randomized central limit 
theorems. 
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1 Introduction 

A random vector .X = (X1, . . . , Xn) in . Rn (.n ≥ 2) defined on the probability space 
.(�,F,P) is called isotropic, if 

. EXiXj = δij for all i, j ≤ n,

where . δij is the Kronecker symbol. Equivalently, all weighted sums 

. Sθ = θ1X1 + · · · + θnXn, θ = (θ1, . . . , θn), θ2
1 + · · · + θ2

n = 1,

with coefficients from the unit sphere .Sn−1 in . Rn have a second moment .ES2
θ = 1. 

In this case, provided that the Euclidean norm .|X| is almost constant, and if n is 
large, a theorem due to Sudakov [27] asserts that the distribution functions 

. Fθ(x) = P{Sθ ≤ x}, x ∈ R,
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are well approximated for most of .θ ∈ S
n−1 by the standard normal distribution 

function 

. �(x) = 1√
2π

∫ x

−∞
e−y2/2 dy.

Here, “most” should refer to the normalized Lebesgue measure .sn−1 on the sphere. 
This property may be quantified, for example, in terms of the Kolmogorov distance 

. ρ(Fθ ,�) = sup
x

|Fθ(x) − �(x)|.

Being rather universal (since no independence of the components . Xk is required), 
randomized central limit theorems of such type have received considerable interest 
in recent years. For the history, bibliography, and interesting connections with other 
concentration problems we refer an interested reader to [8, 9, 12]. Let us mention 
one general upper bound 

.Eθ ρ(Fθ ,�) ≤ c (1 + σ4)
log n√

n
, (1.1) 

which holds true with an absolute constant .c > 0 for any isotropic random vector X 
(cf. Theorem 1.2 in [8]). Here and elsewhere, . Eθ denotes an integral over .S

n−1 with 
respect to the measure .sn−1, and the bound involves the variance-type functional 

. σ 2
4 = σ 2

4 (X) = 1

n
Var(|X|2) (σ4 ≥ 0).

Modulo a logarithmic factor, the bound (1.1) exhibits a standard rate of normal 
approximation for . Fθ , in analogy with the classical case of independent identically 
distributed (iid) summands with equal coefficients. It turns out, however, that in the 
model with arbitrary .θ ∈ S

n−1 and independent components . Xk , the standard rate 
for .ρ(Fθ ,�) is dramatically improved to the order .1/n on average and actually 
for most of . θ . Motivated by the seminal paper of Klartag and Sodin [20], this 
interesting phenomenon was recently studied in [9, 10] for dependent data under 
certain correlation-type conditions. The last chapters of this paper provide a short 
account of these improved rates of normal approximation. 

One of the main aims of this work is to develop lower bounds with a similar 
standard rate as in (1.1) (modulo logarithmic factors) and to illustrate them with a 
number of examples of random variables . Xk often appearing in Functional Analysis. 
These results rely on a careful examination of the closely related .L2-distance 

.ω(Fθ ,�) =
( ∫ ∞

−∞
(Fθ (x) − �(x))2 dx

)1/2
.
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Similarly to (1.1), it can be shown that for the class of isotropic random vectors the 
inequality 

.Eθ ω2(Fθ ,�) ≤ c (1 + σ 2
4 )

1

n
(1.2) 

holds without an unnecessary logarithmic term. However, in order to explore the real
behavior of the average .L2-distance, some other characteristics of the distribution 
of X are required. For example, assuming that the distribution is supported on the 
sphere . 

√
nS

n−1, the .L2-distance admits an asymptotic expansion in terms of the 
moment functionals (normalized .Lp-norms) 

. mp = mp(X) = 1√
n

(
E 〈X, Y 〉p )1/p = 1√

n

(∑
(EXi1 . . . Xip )2

)1/p

.

Here, Y is an independent copy of X, and the summation is performed over all 
indices .1 ≤ i1, . . . , ip ≤ n. The second representation shows that these functionals 
are non-negative for any integer .p ≥ 1. Note that .m1 = 0 if X has mean zero, 
.m2 = 1 if X is isotropic, and .mp = 0 with odd p when the distribution of X is 
symmetric about the origin. The following expansion involves the moments .mp up 
to order 4. 

Theorem 1.1 Let X be an isotropic random vector in . Rn with mean zero and such 
that .|X|2 = n a.s. We have 

.Eθ ω2(Fθ ,�) = c

n3/2 m3
3 + O

( 1

n2 m4
4

)
(1.3) 

with .c = 1
16

√
π
. Similarly, with some absolute constants .c1, c2 > 0, 

.Eθ ρ2(Fθ ,�) ≤ c1 log n

n3/2 m3
3 + c2(log n)2

n2 m4
4. (1.4) 

As we will see, in the general isotropic case without the support assumption, 
but with bounded . σ4, the average .L2-distance is described by a more complicated 
formula 

. Eθ ω2(Fθ ,�) = 1√
2πn

(
1 + 1

8n

)
E

√
|X|2 + |Y |2

− 1√
2πn

(
1 + 1

4n

)
E |X − Y | + O

(1 + σ 2
4

n2

)
, (1.5) 

which holds whenever .E |X|2 = n. 
In the setting of Theorem 1.1, using the pointwise bound .| 〈X, Y 〉 | ≤ n together 

with the isotropy assumption, we have .E 〈X, Y 〉3 ≤ n2 and .E 〈X, Y 〉4 ≤ n3.
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Therefore, the inequalities (1.3) and (1.4) yield with some absolute constant . c > 0

.Eθ ω2(Fθ ,�) ≤ c

n
, Eθ ρ2(Fθ ,�) ≤ c (log n)2

n
, (1.6) 

thus recovering the upper bounds (1.1) and (1.2) for this particular case (since . σ4 =
0). On the other hand, for a large variety of examples, such bounds turn out to 
be optimal and may be reversed modulo a logarithmic factor (for large n). To see 
this, one may use the following lower bound which will be derived from a slightly 
modified variant of (1.5). 

Theorem 1.2 Let X be a random vector in . Rn satisfying .E |X|2 = n, and let Y be 
its independent copy. For some absolute constants .c1, c2 > 0, we have 

.Eθ ω2(Fθ ,�) ≥ c1 P

{
|X − Y | ≤ 1

2

√
n

}
− c2

1 + σ 4
4

n2 . (1.7) 

Thus, if the probability in (1.7) is of order at least .1/n, and . σ4 is bounded, the 
right-hand side of this bound will be of the same order. If, for example, . |X| = √

n

a.s., we then obtain that .Eθ ω2(Fθ ,�) ∼ 1/n. In order to derive a similar conclusion 
for the Kolmogorov distance, one may refer to the next statement. 

Theorem 1.3 Let X be an isotropic random vector in . Rn such that .|X| ≤ b
√

n a.s. 
Suppose that we have a lower bound at the standard rate 

. Eθ ω2(Fθ ,�) ≥ D

n

with some .D > 0. Then with some absolute constants . c0, c1 > 0

. Eθ ρ(Fθ , F ) ≥ c0

(1 + σ4)3 b2

D2

(log n)4
√

n
− c1 (1 + σ 2

4 )

n
.

These estimates may be employed to arrive at the two-sided bounds of the form 

.
c0

n
≤ Eθ ω2(Fθ ,�) ≤ c1

n
,

c0

(log n)4
√

n
≤ Eθ ρ(Fθ ,�) ≤ c1 log n√

n
(1.8) 

with some absolute constants .c0 > 0 and .c1 > 0. Examples where both inequalities 
in (1.8) are fulfilled include the following uniformly bounded orthonormal systems 
in .L2(�,F,P): 

(i) The trigonometric system .X = (X1, . . . , Xn) with components 

.X2k−1(t) = √
2 cos(kt),

X2k(t) = √
2 sin(kt) (−π < t < π, k = 1, . . . , n/2, n even)
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on the interval .� = (−π, π) equipped with the normalized Lebesgue measure 
. P. 

(ii) The cosine trigonometric system .X = (X1, . . . , Xn) with 

. Xk(t) = √
2 cos(kt)

on the interval .� = (0, π) equipped with the normalized Lebesgue measure . P. 
(iii) The normalized Chebyshev polynomials .X1, . . . , Xn defined by 

. Xk(t) = √
2 cos(k arccos t)

= √
2

[
tn −

(
n

2

)
tn−2(1 − t2) +

(
n

4

)
tn−4(1 − t2)2 − . . .

]

on .� = (−1, 1) equipped with the probability measure .dP(t) = 1

π
√

1−t2
dt , 

.|t | < 1. 
(iv) The systems of functions of the form 

. Xk(t, s) = 
(kt + s), k = 1, . . . , n (0 < t, s < 1)

on the square .� = (0, 1) × (0, 1) equipped with the Lebesgue measure . P. In  
this case, (1.8) holds true for any 1-periodic Lipschitz function . 
 on the real 
line such that .

∫ 1
0 
(x) dx = 0 and .

∫ 1
0 
(x)2 dx = 1 with constants . c0 and . c1

depending on . 
 only. 
(v) The Walsh system 

. X = {Xτ }τ 
=∅, τ ⊂ {1, . . . , d},

of dimension .n = 2d − 1 on the discrete cube .� = {−1, 1}d (the ordering 
of the components does not play any role). Here, . P denotes the normalized 
counting measure, and 

. Xτ (t) =
∏
k∈τ

tk for t = (t1, . . . , td ) ∈ �.

(vi) Random vectors X with associated empirical distribution functions . Fθ based 
on the “observations” .Xk = √

n θk (.1 ≤ k ≤ n). 

The paper is organized as follows. We start in Sect. 2 with a review of several 
results on the so-called typical distributions F which serve as main approximations 
for . Fθ (in general, they do not need to be normal, or even nearly normal). Sections 3– 
7 deal with the .L2-distances .ω(Fθ , F ) only, while Sects. 8–12 are mostly focused 
on the Kolmogorov distances .ρ(Fθ , F ). In Sect. 13, the examples described in items 
(i)–(vi) illustrate the applicability of Theorems 1.1–1.3, thus with a standard rate of 
normal approximation. In Sect. 14 we consider lacunary trigonometric systems and
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show that the typical rate is improved to the order .1/n. Similar improved rates are 
also reviewed in the last section in presence of certain correlation-type conditions. 
Thus an outline of all sections reads as: 

1. Introduction 
2. Typical distributions 
3. Upper bound for the .L2-distance at standard rate 
4. General approximations for the .L2-distance with error of order at most . 1/n

5. Proof of Theorem 1.1 for the .L2-distance 
6. General lower bounds for the .L2-distance. Proof of Theorem 1.2 
7. Lipschitz systems 
8. Berry-Esseen-type bounds 
9. Quantitative forms of Sudakov’s theorem for the Kolmogorov distance 

10. Proof of Theorem 1.1 for the Kolmogorov Distance 
11. Relations between . L1, . L2 and Kolmogorov distances 
12. Lower bounds. Proof of Theorem 1.3 
13. Functional examples 
14. The Walsh system; Empirical measures 
15. Improved rates for lacunary systems 
16. Improved rates for independent and log-concave summands 
17. Improved rates under correlation-type conditions 

As usual, the Euclidean space . Rn is endowed with the canonical norm .| · | and 
the inner product .〈·, ·〉. In the sequel, we denote by . Eθ an integral over .Sn−1 with 
respect to the measure . sn−1. By  c, .c1, c2, . . . , we denote positive absolute constants 
which may vary from place to place (if not stated explicitly that c depends on some 
parameter). Similarly C will denote a quantity bounded by an absolute constant. 
Throughout, we assume that X is a given random vector in . Rn (.n ≥ 2) and Y is its 
independent copy. 

2 Typical Distributions 

In the sequel, we denote by 

. F(x) = EθFθ (x) = Eθ P{Sθ ≤ x}, x ∈ R,

the mean distribution function of the weighted sums .Sθ = 〈X, θ〉 with respect to 
the uniform measure .sn−1. It is also called a typical distribution function using the 
terminology of [27]. Indeed, according to Sudakov’s theorem, if X is isotropic, then 
most of . Fθ are concentrated about F in a weak sense (cf. [1, 2, 8] for quantitative 
statements). 

However, whether or not F itself is close to the normal distribution function . �
is determined by the concentration properties of the distribution of . |X|. Note that, 
due to the rotational invariance of .sn−1, the typical distribution can be described as
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the distribution of the product .θ1 |X|, assuming that .θ = (θ1, . . . , θn) is a random 
vector which is independent of X and has distribution .sn−1. In this product, .θ1

√
n is 

almost standard normal, so that F is almost standard normal, if and only if . 1√
n

|X|
is almost 1 (like in the weak law of large numbers). This assertion can be quantified 
in terms of the weighted total variation distance by virtue of the following upper 
bound derived in [7]. 

Proposition 2.1 If .E |X|2 = n (in particular, when X is isotropic), then 

. 

∫ ∞

−∞
(1 + x2) |F(dx) − �(dx)| ≤ c

n

(
1 + Var(|X|)).

In particular, this gives a non-uniform bound for the normal approximation, 
namely 

.|F(x) − �(x)| ≤ c

n (1 + x2)

(
1 + Var(|X|)), x ∈ R. (2.1) 

In these bounds we shall rely on the following monotone functionals (of p)

.σ2p = √
n

(
E

∣∣∣ |X|2
n

− 1
∣∣∣p

)1/p

, p ≥ 1, (2.2) 

where the particular cases .p = 1 and .p = 2 will be most important. If .E |X|2 = n, 
we thus deal with a more tractable quantity 

. σ 2
4 = 1

n
Var

(|X|2).

Using an elementary inequality .Var(ξ)Eξ2 ≤ Var(ξ2) (which is true for any random 
random variable .ξ ≥ 0), we have .Var(|X|) ≤ σ 2

4 . Another similar relation 

. 
1

4
σ 2

2 ≤ Var(|X|) ≤ √
n σ2

can be found in [8]. From (2.1), we therefore obtain the following bounds for the 
normal approximation in all .Lp-norms 

. ‖F − �‖p =
( ∫ ∞

−∞
|F(x) − �(x)|p dx

)1/p

,

including the limit case 

.‖F − �‖∞ = ρ(F,�) = sup
x

|F(x) − �(x)|.
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Corollary 2.2 If .E |X|2 = n, then, for all .p ≥ 1, 

.‖F − �‖p ≤ c
1 + σ2√

n
, ‖F − �‖p ≤ c

1 + σ 2
4

n
. (2.3) 

Note that the characteristic function associated to F is given by 

.f (t) = Eθ E eit〈X,θ〉 = Eθ E eit |X| θ1 = E Jn(t |X|), t ∈ R, (2.4) 

where . Jn denotes the characteristic function of the first coordinate . θ1 of . θ under 
.sn−1. Hence, by the Plancherel theorem, 

.ω2(F,�) = 1

2π

∫ ∞

−∞
(
E Jn(t |X|) − e−t2/2)2 dt

t2 . (2.5) 

For .p = 2, the relations in (2.3) can also be derived by means of (2.5) and by virtue 
of the following Edgeworth-type approximations derived in [8] and [10]. 

Lemma 2.3 For all .t ∈ R, 

.
∣∣Jn

(
t
√

n
) − e−t2/2

∣∣ ≤ c

n
min{1, t2}. (2.6) 

Moreover,

.

∣∣∣Jn

(
t
√

n) −
(

1 − t4

4n

)
e−t2/2

∣∣∣ ≤ c

n2
min{1, t4}. (2.7) 

The functions . Jn have a subgaussian (although oscillatory) decay on a long 
interval of the real line. In particular, as was shown in [8], 

.
∣∣Jn

(
t
√

n
)∣∣ ≤ 5 e−t2/2 + 4 e−n/12, t ∈ R. (2.8) 

This bound can be used for the estimation of the characteristic function of the typical
distribution, by involving the variance-type functionals . σ2p. 

Lemma 2.4 The characteristic function of the typical distribution satisfies, for all 
.t ∈ R, 

. cp |f (t)| ≤ e−t2/4 + 1 + σ
p

2p

np/2

with constants .cp > 0 depending on .p ≥ 1 only. Consequently, for all .T > 0, 

.
cp

T

∫ T

0
|f (t)| dt ≤ 1

T
+ 1 + σ

p

2p

np/2 .
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Proof One may split the expectation in (2.4) to the event .A = {|X|2 ≤ λn} and its 
complement .B = {|X|2 > λn}, .0 < λ < 1. By (2.8), 

. E |Jn(t |X|)| 1B ≤ E
(
5 e−t2|X|2/2n + 4 e−n/12) 1B

≤ 5 e−λt2/2 + 4 e−n/12.

On the other hand, recalling the definition (2.2), we have 

. P(A) = P
{
n − |X|2 ≥ (1 − λ)n

}

≤ 1

((1 − λ)n)p
E |n − |X|2|p = σ

p

2p

(1 − λ)p np/2 . (2.9) 

Choosing .λ = 1
2 , and since .|Jn(s)| ≤ 1 for all .s ∈ R, we get 

. E |Jn(t |X|)| 1A ≤ (2σ2p)p n−p/2,

thus implying that 

. |f (t)| ≤ 5 e−t2/4 + 4 e−n/12 + (2σ2p)p n−p/2.

This readily yields the desired pointwise and integral bounds of the lemma. ��
If .|X| = √

n a.s., the typical distribution F is just the distribution of .
√

n θ1, 
the normalized first coordinate of a point on the unit sphere under .sn−1, whose 
characteristic function is .Jn(t

√
n). In this case, the subgaussian character of F 

manifests itself in corresponding deviation and moment inequalities such as the 
following. 

Lemma 2.5 For all .p > 0, 

.Eθ |θ1|p ≤ 2
(p

n

)p/2
. (2.10) 

This inequality can be derived from the well-known bound on the Laplace 
transform 

.Eθ etθ1 ≤ exp
{ t2

2(n − 1)

}
, t ∈ R,
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which follows from the fact that the logarithmic Sobolev constant for the unit 
sphere is equal to .n − 1 (cf. [21]). Using .xp ≤ (

p
e
)p ex , . x ≥ 0, we have  

.|x|p ≤ 2 (
p
e
)p cosh(x), .x ∈ R, and the above bound implies 

. tp Eθ |θ1|p ≤ 2
(p

e

)p

e
t2

2(n−1) for all t ≥ 0.

The latter can be optimized over t , which leads to (2.10), even in a sharper form. 
In this connection, let us emphasize that rates for the normal approximation for F 

that are better than .1/n cannot be obtained under the support assumption as above. 

Proposition 2.6 For any random vector X in . Rn such that .|X|2 = n a.s., we have 

. Eθ ρ(F,�) ≥ c

n
.

Proof One may apply the following lower bound 

.ρ(F,�) ≥ 1

3T

∣∣∣
∫ T

0
(f (t) − e−t2/2)

(
1 − t

T

)
dt

∣∣∣, (2.11) 

which holds for any .T > 0 (cf. [3]). Since .|X|2 = n a.s., we have .f (t) = Jn(t
√

n). 
Choosing .T = 1 and applying (2.7), it follows from (2.11) that .ρ(F,�) ≥ c

n
for 

all .n ≥ n0 where . n0 is determined by c only. But, a similar bound also holds for 
.n < n0 since F is supported on the interval .[−√

n,
√

n]. ��

3 Upper Bound for the L2-Distance at Standard Rate 

Like in the problem of normal approximation for the typical distribution function 
.F = EθFθ , the closeness of distribution functions .Fθ of the weighted sums 
.Sθ = 〈X, θ〉 (.θ ∈ S

n−1) to  F in the metric . ω can also be explored in terms of 
the associated characteristic functions (the Fourier-Stieltjes transforms) 

.fθ (t) = E eit〈X,θ〉 =
∫ ∞

−∞
eit〈x,θ〉 dFθ (x), t ∈ R. (3.1) 

Again, let us start with the identity 

.ω2(Fθ , F ) = 1

2π

∫ ∞

−∞
|fθ (t) − f (t)|2

t2 dt. (3.2) 

Here, the mean value of the numerator represents the variance . Eθ |fθ (t)|2 − |f (t)|2
with respect to .sn−1. Moreover, using an independent copy Y of X, we have  

.Eθ |fθ (t)|2 = Eθ E eit〈X−Y,θ〉 = EJn(t |X − Y |). (3.3)
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Hence, the Plancherel formula (3.2) together with (2.4) yields 

.Eθ ω2(Fθ , F ) = 1

2π

∫ ∞

−∞

(
EJn(t |X − Y |) − (

EJn(t |X|))2
) dt

t2 . (3.4) 

In this section our aim is to show that the above expression is of order at most 
.O(1/n) provided that the mean .a = EX, .m2 = m2(X) and .σ 2

4 = σ 2
4 (X) are of 

order 1. The next statement contains the upper bound (1.2) as a partial case. 

Proposition 3.1 Given a random vector X in . Rn with .EX = a and .E |X|2 = n, we  
have 

.Eθ ω2(Fθ , F ) ≤ cA

n
(3.5) 

with .A = 1+|a|2 +m2
2 +σ 2

4 . A similar inequality continues to hold with the normal 
distribution function . � in place of F . 

If X is isotropic, then .m2 = 1, while .|a| ≤ 1 (by Bessel’s inequality). Hence, 
both characteristics .m2 and a may be removed from the parameter A in this case. 
However, in the general case, it may happen that . m2 and . σ4 are bounded, while . |a|
is large. The example in Remark 3.2 shows that this parameter can not be removed. 

Proof Note that, for any .η > 0, 

.

∫ ∞

−∞
min{1, t2η2}

t2 dt = 4η, (3.6) 

Hence, in the formula (3.4), the expectation .EJn(t |X − Y |) can be replaced using 
the normal approximation (2.6) at the expense of an error not exceeding 

. 
c

n
E

∫ ∞

−∞
min

{
1,

t2|X − Y |2
n

} dt

t2
= 4c

n
E

|X − Y |√
n

≤ 8c

n
,

where we used that .E |X| ≤ √
n. Similarly, by (2.6) and (3.6), 

.

∫ ∞

−∞

∣∣∣ (EJn(t |X|))2 − (
E e−t2|X|2/2n

)2
∣∣∣ dt

t2 ≤ 2E
∫ ∞

−∞
∣∣Jn(t |X|) − e−t2|X|2/2n

∣∣ dt

t2

≤ 2c

n
E

∫ ∞

−∞
min

{
1,

t2|X|2
n

} dt

t2

= 8c

n
E

|X|√
n

≤ 8c

n
.
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Hence, using these bounds in (3.4), we arrive at the general approximation 

.Eθ ω2(Fθ , F ) = 1

2π

∫ ∞

−∞

(
E e−t2|X−Y |2/2n − (

E e−t2|X|2/2n
)2

) dt

t2 + C

n
, (3.7) 

where we recall that C denotes a quantity bounded by an absolute constant.
Introduce the random variable

. ρ2 = |X − Y |2
2n

(ρ ≥ 0).

By Jensen’s inequality, .E e−t2|X|2/2n ≥ e−t2/2, so that, by (3.7), 

. Eθ ω2(Fθ , F ) ≤ 1

2π
E

∫ ∞

−∞
e−ρ2t2 − e−t2

t2
dt + c

n
.

The above integral is easily evaluated (by differentiating with respect to the variable 
“. ρ2"), and we arrive at the bound 

.Eθ ω2(Fθ , F ) ≤ 1√
π

(1 − Eρ) + c

n
. (3.8) 

To further simplify, one may apply an elementary inequality . 1 − x ≤ 1
2 (1 −

x2) + (1 − x2)2 (.x ≥ 0), which gives 

. Eθ ω2(Fθ , F ) ≤ 1

2
√

π
E (1 − ρ2) + 1√

π
E (1 − ρ2)2 + c

n
.

Since 

. 1 − ρ2 = n − |X|2
2n

+ n − |Y |2
2n

+ 〈X, Y 〉
n

,

we have 

. 1 − Eρ2 = 1

n
E 〈X, Y 〉 = 1

n
|EX|2 = 1

n
|a|2.

In addition, 

.(1 − ρ2)2 ≤ 2

(
n − |X|2

2n
+ n − |Y |2

2n

)2

+ 2
〈X, Y 〉2

n2 ,
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which implies 

. E (1 − ρ2)2 ≤ Var(|X|2)
n2

+ 2
E 〈X, Y 〉2

n2
= σ 2

4 + 2m2
2

n
.

Using this estimate in (3.8), the inequality (3.5) follows immediately. 
For the second assertion, it remains to apply Corollary 2.2. ��

Remark 3.2 Let us illustrate the inequality (3.5) in the example where the random 
vector X has a normal distribution with a large mean value. Given a standard normal 
random vector .Z = (Z1, . . . , Zn−1) in .Rn−1 (which we identify with the space of 
all points in . Rn with zero last coordinate), define 

. X = αZ + λen with 1 ≤ λ ≤ n1/4, α2(n − 1) + λ2 = n,

where .en = (0, . . . , 0, 1) is the last unit vector in the canonical basis of . Rn. Since 
Z is orthogonal to . en, so that .|X|2 = α2 |Z|2 + λ2, we have .E |X|2 = n, and 

. σ 2
4 = α4

n
Var(|Z|2) = 2α4 (n − 1)

n
= 2

(n − λ2)2

n(n − 1)
< 2.

Let . Z′ be an independent copy of Z. Then .Y = αZ′ + λen is an independent 
copy of X, so that 

. m2
2 = 1

n
E 〈X, Y 〉2 = 1

n
(α4 (n − 1) + λ4) < 2.

Thus, both .m2 and . σ4 are bounded, while the mean .a = EX = λen has the 
Euclidean length .|a| = λ ≥ 1. Hence, the inequality (3.5) being stated for the 
normal distribution function in place of F simplifies to 

. Eθ ω2(Fθ ,�) ≤ cλ2

n
.

Let us show that this bound may be reversed up to an absolute factor (which 
would imply that .|a|2 may not be removed from A). For any unit vector . θ =
(θ1, . . . , θn), the linear form 

. Sθ = 〈X, θ〉 = αθ1Z1 + · · · + αθn−1Zn−1 + λθn

has a normal distribution on the line with mean .ESθ = λθn and variance . Var(Sθ ) =
α2(1 − θ2

n). Consider the normal distribution function .�μ,σ 2(x) = �(
x−μ

σ
) with 

parameters .0 ≤ μ ≤ 1 and .
1
2 ≤ σ 2 ≤ 1 (.σ > 0). If .x ≤ μ

1+σ
, then .

x−μ
σ

≤ x, and on
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the interval with these endpoints the standard normal density .ϕ(y) attains minimum 
at the left endpoint. Hence 

. |�μ,σ 2(x) − �(x)| =
∫ x

x−μ
σ

ϕ(y) dy ≥
(
x − x − μ

σ

)
ϕ
(x − μ

σ

)
,

so that 

. ω2(�μ,σ 2 ,�) ≥
∫ μ

1+σ

−∞

(
x − x − μ

σ

)2
ϕ
(x − μ

σ

)2
dx

= σ

2π

∫ − μ
1+σ

−∞
(μ − (1 − σ)y)2 e−y2/2 dy

≥ σμ2

2π

∫ − μ
1+σ

−∞
e−y2/2 dy ≥ cμ2.

In our case, since .λ ≤ n1/4 and 

. α2 = n − λ2

n − 1
≥ n − √

n

n − 1
≥ 1 − 1√

n
,

we have .|ESθ | ≤ 1 and .Var(Sθ ) ≥ 1
2 on the set .�n = {θ ∈ S

n−1 : |θn| <
log n√

n
} with 

n large enough. It follows that 

. Eθ ω2(Fθ ,�) ≥ cλ2
E θ2

n 1{θ∈�n} ≥ c′λ2

n
.

4 General Approximations for the L2-Distance with Error 
of Order at Most 1/n 

We now turn to general representations for the average .L2-distance between . Fθ and 
the typical distribution function F with error of order at most .1/n. 

Proposition 4.1 Suppose that .E |X| ≤ b
√

n for some .b ≥ 0. Then 

.Eθ ω2(Fθ , F ) = 1√
2π

ER + Cb

n2 , (4.1) 

where

.R = (|X|2 + |Y |2)1/2

√
n

(
1 + 1

4n

|X|4 + |Y |4
(|X|2 + |Y |2)2

)
− |X − Y |√

n

(
1 + 1

4n

)
. (4.2)
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We use the convention that .R = 0 if .X = Y = 0. Note that .|R| ≤ 3 |X|+|Y |√
n

, so  

.ER ≤ 3b. 
Let us give a simpler expression by involving the functional . σ 2

4 = 1
n

Var(|X|2)
and assuming that .E |X|2 = n. Since 

. 
|X|4 + |Y |4

(|X|2 + |Y |2)2 − 1

2
= (|X|2 − |Y |2)2

2 (|X|2 + |Y |2)2 ,

we may write 

.R= 1

8n3/2

(|X|2−|Y |2)2

(|X|2+|Y |2)3/2+
(|X|2+|Y |2)1/2

√
n

(
1+ 1

8n

)
−|X−Y |√

n

(
1+ 1

4n

)
. (4.3) 

As we will see, the first term here is actually of order at most .σ 2
4 /n2. As a result, we 

arrive at the relation (1.5). 

Proposition 4.2 If .E |X|2 = n, then 

.Eθ ω2(Fθ , F ) = 1√
2π

ER + C
1 + σ 2

4

n2 , (4.4) 

where

.R = (|X|2 + |Y |2)1/2

√
n

(
1 + 1

8n

)
− |X − Y |√

n

(
1 + 1

4n

)
. (4.5) 

Proof of Proposition 4.1 Let us return to the Plancherel formula (3.4). To simplify 
the integrand therein, we apply the inequality (2.7) in Lemma 2.3, by replacing . t4

with . t2 in the remainder term. Using the equality (3.6), the expectation . EJn(t |X −
Y |) in the formula (3.4) can be therefore replaced according to (2.7) at the expense 
of an error not exceeding 

. 
c

n2 E

∫ ∞

−∞
min

{
1,

t2|X − Y |2
n

} dt

t2 = 4c

n2 E
|X − Y |√

n
≤ 8cb

n2 .

As for the main term .(1 − t4

4n
) e−t2/2 in (2.7), it is bounded by an absolute 

constant, which implies that 

.Jn

(
t
√

n)Jn

(
s
√

n) =
(

1 − t4

4n

)(
1 − s4

4n

)
e−(t2+s2)/2 + O

(
n−2 min{1, t2 + s2})

=
(

1 − t4 + s4

4n

)
e−(t2+s2)/2 + O

(
n−2 min{1, t2 + s2}).
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Hence 

. |EJn(t |X|)|2 = E Jn(t |X|) Jn(t |Y |) = E

(
1 − t4 (|X|4 + |Y |4)

4n3

)
e− t2 (|X|2+|Y |2)

2n

+ O
(
n−2 min

{
1,

t2 (|X|2 + |Y |2)
n

})
.

As before, after integration in (3.4) the latter remainder term will produce a quantity 
not exceeding a multiple of .b/n2. As a preliminary step, we therefore obtain the 
representation 

.Eθ ω2(Fθ , F ) = 1

2π
I + Cb

n2 (4.6) 

with

. I = E

∫ ∞

−∞

[(
1− t4|X − Y |4

4n3

)
e− t2|X−Y |2

2n −
(
1− t4 (|X|4+|Y |4)

4n3

)
e− t2 (|X|2+|Y |2)

2n

]
dt

t2 .

To evaluate the integrals of this type, consider the functions 

. ψr(α) = 1√
2π

∫ ∞

−∞

(
(1 − rt4) e−αt2/2 − e−t2/2

) dt

t2
(α > 0, r ∈ R).

Clearly, 

. ψr(1) = − 1√
2π

∫ ∞

−∞
rt2 e−t2/2 dt = −r

and 

. ψ ′
r (α) = − 1

2
√

2π

∫ ∞

−∞
(1 − rt4) e−αt2/2 dt

= − 1

2
√

α

1√
2π

∫ ∞

−∞

(
1 − r

α2 s4
)

e−s2/2 ds = − 1

2
√

α

(
1 − 3r

α2

)
.

Hence 

. ψr(α) − ψr(1) =
∫ α

1

(
− 1

2
z−1/2 + 3r

2
z−5/2

)
dz

= (1 + r) − (α1/2 + rα−3/2),

and we get 

.ψr(α) = 1 − (α1/2 + rα−3/2). (4.7)
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Here, when . α and r both approach zero subject to the relation .r = O(α2), we get 
in the limit .ψ0(0) = 1. From this,  

. 
1√
2π

I = E (ψr1(α1) − ψr2(α2))

= E (α
1/2
2 + r2α

−3/2
2 ) − E (α

1/2
1 + r1α

−3/2
1 ),

which we need with 

. α1 = |X − Y |2
n

, r1 = |X − Y |4
4n3 ,

α2 = |X|2 + |Y |2
n

, r2 = |X|4 + |Y |4
4n3

.

It follows that 

. α
1/2
2 + r2α

−3/2
2 =

( |X|2 + |Y |2
n

)1/2 (
1 + 1

4n

|X|4 + |Y |4
(|X|2 + |Y |2)2

)
,

α
1/2
1 + r1α

−3/2
1 =

( |X − Y |2
n

)1/2(
1 + 1

4n

)

with the assumption that both expressions are equal to zero in the case .X = Y = 0. 
As a result, (4.6) yields the desired representation (4.1) with quantity R described 
in (4.2). ��

In order to modify (4.1) and (4.2) to the form (4.4) and (4.5), first let us verify 
the following general relation. 

Lemma 4.3 Let . ξ be a non-negative random variable with finite second moment 
(not identically zero), and let . η be its independent copy. Then 

. E
(ξ − η)2

(ξ + η)3/2
1{ξ+η>0} ≤ 12

Var(ξ)

(E ξ)3/2
.

Applying the lemma with .ξ = |X|2, .η = |Y |2 and assuming that .E |X|2 = n, we  
get that 

. E
(|X|2 − |Y |2)2

(|X|2 + |Y |2)3/2 ≤ 12
Var(|X|2)
(E |X|2)3/2 = 12

Var(|X|2)
n3/2 = 12

σ 2
4

n1/2 .

In view of (4.3), this proves Proposition 4.2.
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Proof of Lemma 4.3 By homogeneity, we may assume that .Eξ = 1. In particular, 
.E |ξ − η| ≤ 2. We have  

. E
(ξ − η)2

(ξ + η)3/2
1{ξ+η>1/2} ≤ 23/2

E (ξ − η)2 1{ξ+η>1/2}

≤ 23/2
E (ξ − η)2 = 4

√
2 Var(ξ).

Also note that, by Chebyshev’s inequality, 

. P {ξ ≤ 1/2} = P {1 − ξ ≥ 1/2} ≤ 4 Var(ξ)2,

so 

. P {ξ + η ≤ 1/2} ≤ P {ξ ≤ 1/2}P {η ≤ 1/2} ≤ 16 Var(ξ)2.

Hence, since . |ξ−η|
ξ+η

≤ 1 for .ξ + η > 0, we have, by Cauchy’s inequality, 

. E
(ξ − η)2

(ξ + η)3/2 1{0<ξ+η≤1/2} ≤ E
√|ξ − η| 1{0<ξ+η≤1/2}

≤ √
E |ξ − η| √P {ξ + η ≤ 1/2} ≤ 4

√
2 Var(ξ).

It remains to combine both inequalities, which yield 

. E
(ξ − η)2

(ξ + η)3/2 1{ξ+η>0} ≤ 8
√

2 Var(ξ) ≤ 12 Var(ξ).

��

5 Proof of Theorem 1.1 for the L2-Distance 

The expression (4.5) may be further simplified in the particular case where the 
distribution of X is supported on the sphere .

√
n S

n−1. Introduce the random variable 

. ξ = 〈X, Y 〉
n

,

where Y is an independent copy of X. Since .|X −Y |2 = 2n (1 − ξ), Proposition 4.2 
yields: 

Corollary 5.1 If .|X|2 = n a.s., then 

.
√

π Eθ ω2(Fθ , F ) =
(

1 + 1

4n

)
E

(
1 − (1 − ξ)1/2

)
− 1

8n
+ O

( 1

n2

)
. (5.1)
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Note that .|ξ | ≤ 1. Therefore, the relation (5.1) suggests to develop an expansion 
in powers of . ε for the function .w(ε) = 1 − √

1 − ε near zero, which will be needed 
up to the term . ε4. 

Lemma 5.2 For all .|ε| ≤ 1, 

. 1 − √
1 − ε ≤ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 3ε4.

In addition, 

. 1 − √
1 − ε ≥ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 0.01 ε4.

Proof By Taylor’s formula for the function .w(ε) around zero on the half-axis .ε < 1, 

. 1 − √
1 − ε = 1

2
ε + 1

8
ε2 + 1

16
ε3 + 5

128
ε4 + w(5)(ε1)

120
ε5

for some . ε1 between zero and . ε. Since .w(5)(ε) = 105
32 (1 − ε)−9/2 ≥ 0, we have an  

upper bound 

. 1 − √
1 − ε ≤ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 5

128
ε4, ε ≤ 0.

Also, .w(5)(ε) ≤ 105
32 39/2 < 461 for .0 ≤ ε ≤ 2

3 , so, in this interval 

. 
5

128
ε4 + w(5)(ε1)

120
ε5 ≤ 3ε4.

Thus, in both cases, 

. 1 − √
1 − ε ≤ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 3ε4, ε ≤ 2

3
.

To treat the remaining values . 23 ≤ ε ≤ 1, it is sufficient to select a positive constant 
b such that the polynomial 

. Q(ε) = 1

2
ε + 1

8
ε2 + 1

16
ε3 + bε4

is greater than or equal to 1 for .ε ≥ 2
3 . On this half-axis, .Q(ε) ≥ 11

27 + b 16
81 ≥ 1 for 

.b ≥ 3. Thus, the upper bound of the lemma is proved. 
Now, from Taylor’s formula we also get that 

.1 − √
1 − ε ≥ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 5

128
ε4, ε ≥ 0.
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In addition, if .−1 ≤ ε ≤ 0, then .w(5)(ε) ≤ 105
32 , so  

. 1 − √
1 − ε = 1

2
ε + 1

8
ε2 + 1

16
ε3 + 5

128
ε4

(
1 + w(5)(ε1)

120
ε
)

≥ 1

2
ε + 1

8
ε2 + 1

16
ε3 + ε4

( 5

128
−

105
32

120

)

≥ 1

2
ε + 1

8
ε2 + 1

16
ε3 + 0.01 ε4.

��
Proof of Theorem 1.1 (First Part) Using Lemma 5.2 with .ε = ξ and applying 
Corollary 5.1, we get an asymptotic representation 

. 
√

π Eθ ω2(Fθ , F ) =
(

1 + 1

4n

) (1

8
Eξ2 + 1

16
Eξ3 + cEξ4

)
− 1

8n
+ O

( 1

n2

)

for some quantity c such that .0.01 ≤ c ≤ 3. If additionally X is isotropic, then 
.E 〈X, Y 〉2 = n, i.e. .Eξ2 = 1

n
, and the representation is simplified to 

. 
√

π Eθ ω2(Fθ , F ) =
(

1 + 1

4n

) ( 1

16
Eξ3 + cEξ4

)
+ O

( 1

n2

)
,

thus removing the term of order .1/n. Moreover, since .Eξ4 ≤ E |ξ |3 ≤ Eξ2 = 1
n

, 
the fraction . 1

4n
may be removed from the brackets at the expense of the remainder 

term. Thus 

. 
√

π Eθ ω2(Fθ , F ) = 1

16
Eξ3 + cEξ4 + O

( 1

n2

)
,

which is exactly the expansion (1.3). ��
Remark 5.3 In the isotropic case with .|X|2 = n a.s., but without the mean zero 
assumption, the above expansion takes the form 

.
√

π Eθ ω2(Fθ , F ) = 1

2
Eξ + 1

16
Eξ3 + cEξ4 + O

( 1

n2

)
. (5.2) 

Since the last two expectations are non-negative, this implies in particular that

.Eθ ω2(Fθ , F ) ≥ 1

2
√

π
Eξ + O

( 1

n2

)
. (5.3)
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6 General Lower Bounds for the L2-Distance: Proof of 
Theorem 1.2 

Proposition 4.1 may be used to establish the following general lower bound which 
will be the first step in the proof of Theorem 1.2. Recall that Y denotes an 
independent copy of a random vector X in . Rn. 

Proposition 6.1 If .E |X| ≤ b
√

n, then 

.Eθ ω2(Fθ , F ) ≥ c1 E ρ ξ4 − c2
b

n2 , (6.1) 

where

. ρ =
( |X|2 + |Y |2

2n

)1/2
, ξ = 2 〈X, Y 〉

|X|2 + |Y |2 .

The argument employs two elementary lemmas. 

Lemma 6.2 If .E |X|2 is finite, then 

.E 〈X, Y 〉2 ≥ 1

n

(
E |X|2)2

. (6.2) 

By the invariance of (6.2) under linear orthogonal transformations, we may 
assume that .EXiXj = λiδij where . λi’s appear as eigenvalues of the covariance 
operator of X. Since 

. E |X|2 =
n∑

i=1

λi, E 〈X, Y 〉2 =
n∑

i=1

λ2
i ,

the inequality (6.2) follows by applying Cauchy’s inequality. 

Lemma 6.3 If .E |X|p is finite for an integer .p ≥ 1, then, for any real number 
.0 ≤ α ≤ p, 

. E
〈X, Y 〉p

(|X|2 + |Y |2)α ≥ 0,

where the ratio is defined to be zero in case .X = Y = 0. In addition, for .α ∈ [0, 2], 

.E
〈X, Y 〉2

(|X|2 + |Y |2)α ≥ 1

n
E

|X|2 |Y |2
(|X|2 + |Y |2)α .
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Proof First, let us note that 

. E
| 〈X, Y 〉 |p

(|X|2 + |Y |2)α ≤ E
(|X| |Y |)p
(|X| |Y |)α = (E |X|p−α)2,

so, the expectation on the left is finite. Without loss of generality, we may assume 
that .0 < α ≤ p and .r = |X|2 + |Y |2 > 0 with probability 1. We use the identity 

. 

∫ ∞

0
e−rt1/α

dt = cα r−α where cα =
∫ ∞

0
e−s1/α

ds,

which gives 

. cα E 〈X, Y 〉p r−α =
∫ ∞

0
E 〈X, Y 〉p e−rt1/α

dt.

Writing .X = (X1, . . . , Xn) and .Y = (Y1, . . . , Yn), we have  

. E 〈X, Y 〉p e−rt1/α = E 〈X, Y 〉p e−t1/α(|X|2+|Y |2)

=
n∑

i1,...,ip=1

(
EXi1 . . . Xip e−t1/α |X|2)2

,

which shows that the left expectation is always non-negative. Integrating over .t > 0, 
this proves the first assertion. 

For the second assertion, write 

. cα E 〈X, Y 〉2 r−α =
∫ ∞

0
E 〈X, Y 〉2 e−t1/α(|X|2+|Y |2) dt =

∫ ∞

0
E 〈Xt, Yt 〉2 dt,

where 

. Xt = e−t1/α |X|2/2 X, Yt = e−t1/α |Y |2/2 Y.

Since . Yt represents an independent copy of . Xt , one may apply Lemma 6.2 which 
gives 

. E 〈Xt, Yt 〉2 ≥ 1

n
E |Xt |2 |Yt |2.

Hence, 

.

∫ ∞

0
E 〈Xt, Yt 〉2 dt ≥ 1

n

∫ ∞

0
E|Xt |2 |Yt |2 dt

= 1

n

∫ ∞

0
E|X|2 |Y |2 e−t1/α(|X|2+|Y |2) dt = cα

n
E |X|2 |Y |2 r−α.

��
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Proof of Proposition 6.1 Let us return to the representation (4.3) in Proposition 4.1 
and write 

. Eθ ω2(Fθ , F ) = 1√
2π

E (R0 + R1) + Cb

n2 ,

where 

. R0 = 1

8n3/2

(|X|2 − |Y |2)2

(|X|2 + |Y |2)3/2

and 

. R1 = (|X|2 + |Y |2)1/2

√
n

(
1 + 1

8n

)
− |X − Y |√

n

(
1 + 1

4n

)

= (|X|2 + |Y |2)1/2

√
n

[(
1 + 1

4n

)(
1 − √

1 − ξ
) − 1

8n

]

with the assumption that .R0 = 0 when .X = Y = 0. Since .|ξ | ≤ 1, one may apply 
Lemma 5.2 which gives 

. R1 ≥ (|X|2 + |Y |2)1/2

√
n

[(
1 + 1

4n

)(1

2
ξ + 1

8
ξ2 + 1

16
ξ3 + 0.01 ξ4

)
− 1

8n

]
.

The expectation of the terms on the right-hand side containing . ξ and . ξ3 is non-
negative according to Lemma 6.3 with .α = 1

2 , .p = 1, and with .α = 5
2 , .p = 3, 

respectively. Hence, removing the unnecessary factor .1 + 1
4n

, we get 

. Eθ ω2(Fθ , F ) ≥ 1√
2π

ER0 + 1√
2π

E
(|X|2 + |Y |2)1/2

8
√

n

(
ξ2 − 1

n

)

+ c1 E
(|X|2 + |Y |2)1/2

√
n

ξ4 − c2
b

n2 . (6.3) 

Now, by the second inequality of Lemma 6.3 applied with .α = 3/2, . p = 2, we  
have 

.E (|X|2 + |Y |2)1/2 ξ2 = 4 E
〈X, Y 〉2

(|X|2 + |Y |2)3/2

≥ 4

n
E

|X|2 |Y |2
(|X|2 + |Y |2)3/2 .
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This gives 

. E
(|X|2 + |Y |2)1/2

8
√

n

(
ξ2 − 1

n

)
≥ 1

8n3/2 E

[ 4 |X|2 |Y |2
(|X|2 + |Y |2)3/2 − (|X|2 + |Y |2)1/2

]

= − 1

8n3/2 E
(|X|2 − |Y |2)2

(|X|2 + |Y |2)3/2 = −ER0.

Thus, the summand .ER0 in (6.3) neutralizes the second expectation, and we are left 
with the term containing . ξ4. ��
Proof of Theorem 1.2 We apply Proposition 6.1. By the assumption, .Eρ2 = 1 and 
.Var(ρ2) = 1

2n
σ 2

4 , where .σ 2
4 = 1

n
Var(|X|2). Using  

. 2 〈X, Y 〉 = |X|2 + |Y |2 − |X − Y |2, ξ = 1 − |X − Y |2
|X|2 + |Y |2 ,

we have 

. ξ4 ≥ (1 − α)4 1{|X−Y |2 ≤α (|X|2+|Y |2)}

≥ (1 − α)4 1{|X−Y |2 ≤αλn, |X|2+|Y |2 ≥ λn}, 0 < α, λ < 1.

On the set .|X|2 + |Y |2 ≥ λn, we necessarily have .ρ2 ≥ λ
2 , so  

. E ρ ξ4 ≥ (1 − α)4

√
2

√
λ P

{
|X − Y |2 ≤ αλn, |X|2 + |Y |2 ≥ λn

}

≥ (1 − α)4

√
2

√
λ

(
P{|X − Y |2 ≤ αλn} − P{|X|2 + |Y |2 ≤ λn}

)
.

But, by Chebyshev’s inequality 

. P
{|X|2 ≤ λn

} = P
{
n − |X|2 ≥ (1 − λ) n

} ≤ Var(|X|2)
(1 − λ)2 n2 = σ 2

4

(1 − λ)2 n
,

implying 

. P
{|X|2 + |Y |2 ≤ λn

} ≤
(
P
{|X|2 ≤ λn

})2 ≤ 1

(1 − λ)4

σ 4
4

n2 .

Hence 

.E ρ ξ4 ≥ (1 − α)4

√
2

√
λ

(
P{|X − Y |2 ≤ αλn} − 1

(1 − λ)4

σ 4
4

n2

)
.
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Choosing, for example, .α = λ = 1
2 , we get 

. E ρ ξ4 ≥ 1

32
P

{
|X − Y |2 ≤ 1

4
n
}

− σ 4
4

2n2 .

It remains to apply (6.1) with .b = 1 and replace F with . � on the basis of (2.3). ��

7 Lipschitz Systems 

While upper bounds of order .n−1/2 for the .L2-distance .ω(Fθ , F ) on average are 
provided in (1.2) and in the more general inequality (3.5) of Proposition 3.1, in  
this section we focus on the conditions that provide similar lower bounds, as a 
consequence of Theorem 1.2. 

Let L be a fixed measurable function on the underlying probability space 
.(�,F,P). We will say that the system .X1, . . . , Xn of random variables on .(�,F,P), 
or the random vector .X = (X1, . . . , Xn) in . Rn satisfies a Lipschitz condition with 
a parameter function L, if  

. max
1≤k≤n

|Xk(t) − Xk(s)| ≤ n |L(t) − L(s)|, t, s ∈ �. (7.1) 

When . � is an interval of the real line (finite or not), and .L(t) = Lt , . L > 0, this  
condition means that every function . Xk in the system has a Lipschitz semi-norm at 
most Ln. 

As before, we use the variance functional .σ 2
4 = 1

n
Var(|X|2). 

Proposition 7.1 Suppose that .E |X|2 = n. If the random vector X satisfies the 
Lipschitz condition with a parameter function L, then 

.Eθ ω2(Fθ , F ) ≥ cL

n
− c0 (1 + σ 4

4 )

n2 (7.2) 

with some absolute constant .c0 > 0 and with a constant . cL depending on the 
distribution of L only. Moreover, if L has finite second moment, then with some 
absolute constant . c1 > 0

.Eθ ω2(Fθ , F ) ≥ c1

n
√

Var(L)
− c0 (1 + σ 4

4 )

n2
. (7.3) 

Note that, if .X1, . . . , Xn form an orthonormal system in .L2(�,F,P), i.e., the 
random vector X is isotropic, and if L has finite second moment .‖L‖2

2 = EL2, 
then this moment has to be bounded from below by a multiple of .1/n2. Indeed, 
the projection of the function .η(t) = 1 in .L2(�,F,P) to the linear hull H of
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.X1, . . . , Xn has the form .ProjH (η) = ∑n
k=1 〈η,Xk〉 Xk , and we have Bessel’s 

inequality 

. 1 = ‖η‖2
2 ≥ ‖ProjH (η)‖2

2 =
n∑

k=1

〈η,Xk〉2 =
n∑

k=1

(EXk)
2

(where we used the canonical innde product .〈·, ·〉 in .L2(�,F,P)). By the Lipschitz 
assumption, .|Xk(t) − Xk(s)|2 ≤ n2 |L(t) − L(s)|2. Integrating this inequality over 
the product measure .P(dt) ⊗ P(ds), we obtain a lower bound 

. n2 Var(L) ≥ Var(Xk) = 1 − (EXk)
2.

One may now perform summation over .k = 1, . . . , n, which together with Bessel’s 
inequality leads to 

. Var(L) ≥ n − 1

n3 ≥ 1

2n2 (n ≥ 2).

The Lipschitz condition (7.1) guarantees the validity of the following property, 
which can be combined with Theorem 1.2 to obtain (7.2) and (7.3). 

Lemma 7.2 Suppose that the random vector .X = (X1, . . . , Xn) satisfies the 
Lipschitz condition with the parameter function L. If  Y is an independent copy of 
X, then 

. P
{|X − Y |2 ≤ λn

} ≥ c
√

λ

n
, 0 ≤ λ ≤ 1,

where the constant .c > 0 depends on the distribution of L only. Moreover, if L has 
finite second moment, then 

. P
{|X − Y |2 ≤ λn

} ≥
√

λ

6n
√

Var(L)
, 0 ≤ λ ≤ n2 Var(L).

In turn, this lemma is based on the following general observation. 

Lemma 7.3 If . η is an independent copy of a random variable . ξ , then for any . ε0 >

0, 

. P{|ξ − η| ≤ ε} ≥ cε, 0 ≤ ε ≤ ε0,

with some constant .c > 0 independent of . ε. Moreover, if the standard deviation 
.σ = √

Var(ξ) is finite, then 

.P{|ξ − η| ≤ ε} ≥ 1

6σ
ε, 0 ≤ ε ≤ σ.
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Proof The difference .ξ − η has a non-negative characteristic function . h(t) =
|ψ(t)|2, where . ψ is the characteristic function of . ξ . Denoting by H the distribution 
function of .ξ − η, we start with a general identity 

.

∫ ∞

−∞
p̂(x) dH(x) =

∫ ∞

−∞
p(t)h(t) dt, (7.4) 

which is valid for any integrable function .p(t) on the real line with Fourier transform 
.p̂(x) = ∫ ∞

−∞ eitx p(t) dt , . x ∈ R. Given .ε > 0, here we take a standard pair 

. p(t) = 1

2π

( sin εt
2

εt
2

)2
, p̂(x) = 1

ε

(
1 − |x|

ε

)+
,

where we use the notation .a+ = max{a, 0}. In this case, 

. 

∫ ∞

−∞
p̂(x) dH(x) ≤ 1

ε

∫
[−ε,ε]

dH(x) = 1

ε
P{|ξ − η| ≤ ε}.

On the other hand, since the function . sin u
u

is decreasing in .0 < u < π
2 , we have  

. 

∫ ∞

−∞
p(t)h(t) dt ≥ 1

2π

(
2 sin(1/2)

)2
∫ 1/ε

−1/ε

h(t) dt ≥ 1

7

∫ 1/ε

−1/ε

h(t) dt.

Hence, whenever .0 < ε ≤ ε0, by (7.4), 

. P{|ξ − η| ≤ ε} ≥ ε

7

∫ 1/ε

−1/ε

h(t) dt ≥ ε

7

∫ 1/ε0

−1/ε0

h(t) dt.

Since .h(t) is bounded away from zero near the origin, the first assertion follows. 
One may quantify this statement in terms of the variance .σ 2 = Var(ξ) by using 

Taylor’s expansion for .h(t) about zero. Indeed, it gives .1 − h(t) ≤ σ 2t2, and thus 
for .ε ≤ ε0 = σ , 

. 

∫ 1/ε

−1/ε

h(t) dt ≥
∫ 1/σ

−1/σ

(1 − σ 2t2) dt = 4

3σ
.

Since . ε7 · 4
3σ

≥ 1
6σ

ε, the lemma is proved. ��
Proof of Lemma 7.2 Let us equip the product space .�2 = � × � with the product 
measure .P2 = P ⊗ P and redefine X on this new probability space as .X(t, s) =
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X(t), .(t, s) ∈ �2. Then one can introduce an independent copy of X in the form 
.Y (t, s) = X(s). By the Lipschitz condition, 

. |X(t, s) − Y (t, s)|2 =
n∑

k=1

|Xk(t) − Xk(s)|2 ≤ n3 |L(t) − L(s)|2.

Hence, if . η is an independent copy of the random variable .ξ = L, then 

. P
{|X − Y |2 ≤ λn

} ≥ P
{
n3 |ξ − η|2 ≤ λn

} = P

{
|ξ − η| ≤

√
λ

n

}
.

But, by Lemma 7.3 with .ε0 = 1, the latter probability is at least .c
√

λ
n

, where the 
constant c depends on L only (via its distribution). An application of the second 
inequality of Lemma 7.3 yields the second assertion. ��

To include more examples, let us now give a bit more general form of Lemma 7.2, 
assuming that .(�,P) = (�1 × �2,P1 ⊗ P2) is a product probability space. 

Lemma 7.4 Let .X = (X1, . . . , Xn) : � → R
n be a random vector such that, for 

some measurable functions . L1 and . L2 defined on . �1 and . �2 respectively, 

. max
1≤k≤n

|Xk(t1, t2)−Xk(s1, s2)| ≤ n |L1(t1)−L1(s1)|+ |L2(t2)−L2(s2)| (7.5) 

for all .(t1, t2), (s1, s2) ∈ �. If  Y is an independent copy of X, then 

.P
{|X − Y |2 ≤ λn

} ≥ cλ

n
, 0 ≤ λ ≤ 1, (7.6) 

where the constant .c > 0 depends on the distributions of . L1 and . L2 only. 

Proof Again, let us equip the product space .�2 = �×� with the product measure 
.P

2 = P ⊗ P and put .X(t, s) = X(t), .Y (t, s) = X(s) for .t = (t1, t2) ∈ � and 
.s = (s1, s2) ∈ �, so that Y is an independent copy of X. By the Lipschitz condition 
(7.5), for any .k ≤ n, 

. |Xk(t) − Xk(s)|2 ≤ 2n2 |L1(t1) − L1(s1)| + 2 |L2(t2) − L2(s2)|2,

so 

.|X(t) − Y (s)|2 =
n∑

k=1

|Xk(t) − Xk(s)|2

≤ 2n3 |L1(t1) − L1(s1)|2 + 2n |L2(t2) − L2(s2)|2.
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Putting .L1(t1, t2) = L1(t1) and .L2(t1, t2) = L2(t2), one may treat . L1 and . L2 as 
independent random variables. If . L′

1 is an independent copy of . L1 and . L′
2 is an 

independent copy of . L2, we obtain that 

. P
{|X − Y |2 ≤ λn

} ≥ P

{
n2 |L1 − L′

1|2 + |L2 − L′
2|2 ≤ λ

2

}

≥ P

{
n2 |L1 − L′

1|2 ≤ λ

4

}
P

{
|L2 − L′

2|2 ≤ λ

4

}

= P

{
|L1 − L′

1| ≤ 1

2n

√
λ

}
P

{
|L2 − L′

2| ≤ 1

2

√
λ

}
.

It remains to apply Lemma 7.3. ��
Let us now combine the inequality (1.8) of Theorem 1.2 with the inequality (7.6) 

applied with .λ = 1
4 . Then we obtain the following generalization of Proposition 7.1. 

Proposition 7.5 Under the Lipschitz condition (7.5) , we have

. Eθ ω2(Fθ , F ) ≥ c

n
− c0 (1 + σ 4

4 )

n2 ,

where .c0 > 0 is an absolute constant, while .c > 0 depends on the distributions 
of . L1 and . L2. A similar estimate also holds when F is replaced with the normal 
distribution function . �. 

The last assertion follows from the inequality (2.3), cf. Corollary 2.2. 

8 Berry-Esseen-Type Bounds 

We now turn to the study of the Kolmogorov distance 

. ρ(Fθ , F ) = sup
x

|Fθ(x) − F(x)|, θ ∈ S
n−1,

between the distribution functions . Fθ of the weighted sums .Sθ = 〈X, θ〉 and the 
typical distribution function .F = EθFθ . We are mostly interested in bounding the 
second moment .Eθ ρ2(Fθ , F ). As in the case of the .L2-distance, our basic tool will 
be a Fourier analytic approach relying upon a general Berry-Esseen-type bound 

.c ρ(U, V ) ≤
∫ T

0

|Û (t) − V̂ (t)|
t

dt + 1

T

∫ T

0
|V̂ (t)| dt, T > 0, (8.1) 

where U and V may be arbitrary distribution functions on the line with characteristic
functions . Û and . V̂ respectively (cf. e.g. [3, 23, 24]).
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As before, we denote by . fθ and f the characteristic functions associated to . Fθ

and F . Recall that .σ2p-functionals were defined in (2.2). 

Lemma 8.1 If .T ≥ T0 ≥ 1, then for all .p ≥ 1, 

. cp Eθ ρ2(Fθ , F ) ≤
∫ 1

0

Eθ |fθ (t) − f (t)|2
t2

dt + log T

∫ T0

0

Eθ |fθ (t) − f (t)|2
t

dt

+ log T

∫ T

T0

Eθ |fθ (t)|2
t

dt + 1

T 2 + 1 + σ
2p

2p

np
, (8.2) 

where the constants .cp > 0 depend on p only. 

Proof By (8.1), for any .θ ∈ S
n−1, 

. c ρ(Fθ , F ) ≤
∫ T

0

|fθ (t) − f (t)|
t

dt + 1

T

∫ T

0
|f (t)| dt,

and squaring it, we get 

. c ρ2(Fθ , F ) ≤
( ∫ T

0

|fθ (t) − f (t)|
t

dt
)2 + 1

T 2

( ∫ T

0
|f (t)| dt

)2
.

Let us split integration in the first integral into the intervals .[0, 1] and . [1, T ]. By  
Cauchy’s inequality, 

. 

( ∫ 1

0

|fθ (t) − f (t)|
t

dt
)2 ≤

∫ 1

0

|fθ (t) − f (t)|2
t2 dt,

while 

. 

( ∫ T

1

|fθ (t) − f (t)|
t

dt
)2 ≤ log T

∫ T

1

|fθ (t) − f (t)|2
t

dt.

Hence 

.c ρ2(Fθ , F ) ≤
∫ 1

0

|fθ (t) − f (t)|2
t2 dt

+ log T

∫ T

1

|fθ (t) − f (t)|2
t

dt + 1

T 2

( ∫ T

0
|f (t)| dt

)2
.
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Without an essential loss one may extend integration in the second integral to the 
larger interval .[0, T ]. Moreover, taking the expectation over . θ , we then get 

. cEθ ρ2(Fθ , F ) ≤
∫ 1

0

Eθ |fθ (t) − f (t)|2
t2 dt

+ log T

∫ T

0

Eθ |fθ (t) − f (t)|2
t

dt + 1

T 2

( ∫ T

0
|f (t)| dt

)2
.

Again, one may split integration in the second last integral to the two intervals 
.[0, T0] and .[T0, T ], so that to consider separately sufficiently large values of t for 
which .|fθ (t)| is small enough (with high probability). More precisely, since . f (t) =
Eθ fθ (t) and 

. |fθ (t) − f (t)|2 ≤ 2 |fθ (t)|2 + 2 |f (t)|2,

we have .|f (t)|2 ≤ Eθ |fθ (t)|2 and therefore 

. Eθ |fθ (t) − f (t)|2 ≤ 4Eθ |fθ (t)|2.

It remains to apply Lemma 2.4. ��
In order to control the last integral in (8.2), one may apply the upper bound (2.8) 

on . Jn in the representation (3.3) to get that, for all .t ∈ R, 

. Eθ |fθ (t)|2 ≤ 5E e−t2|X−Y |2/2n + 4 e−n/12,

where Y is an independent copy of the random vector X. Splitting the last 
expectation to the event .A = {|X − Y |2 ≤ 1

4 n} and its complement leads to 

.Eθ |fθ (t)|2 ≤ 5 e−t2/8 + 4 e−n/12 + 5P(A). (8.3) 

The latter probability may further be estimated by using the moment functionals
such as . mp. 

To recall the argument (cf. also [8], Proposition 2.5), first note that, by (2.9) with 
.λ = 3

4 , 

. P

{
|X|2 + |Y |2 ≤ 3

4
n
}

≤ P

{
|X|2 ≤ 3

4
n
}
P

{
|Y |2 ≤ 3

4
n
}

≤ (4σ2p)2p

np
.

On the other hand, by Markov’s inequality, assuming that .p ≥ 1 is integer, we have 

.P

{
| 〈X, Y 〉 | ≥ 1

4
n
}

≤ 42p
E 〈X, Y 〉2p

n2p
= 42p m

2p

2p

np
.
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Since .|X − Y |2 = |X|2 + |Y |2 − 2 〈X, Y 〉, we have  

. 

{
|X − Y |2 ≤ 1

4

}
⊂

{
|X| + |Y |2 ≤ 1

4
n
}

∪
{

〈X, Y 〉 >
1

4
n
}
,

and it follows that 

. P(A) ≤ P

{
|X|2 + |Y |2 ≤ 3

4
n
}

+ P

{
〈X, Y 〉 >

1

4
n
}

≤ 42p

np
(m

2p

2p + σ
2p

2p ).

Returning to (8.3) and noting that necessarily .m2p ≥ m2 ≥ 1 under the 
assumption that .E |X|2 = n, we thus obtain that 

. cp Eθ |fθ (t)|2 ≤ m
2p

2p + σ
2p

2p

np
+ e−t2/8.

Using this bound, the inequality (8.2) is simplified: 

Lemma 8.2 If the random vector X in . Rn satisfies .E |X|2 = n, then for all . T ≥
T0 ≥ 1 and any integer .p ≥ 1, 

. cp Eθ ρ2(Fθ , F ) ≤
∫ 1

0

Eθ |fθ (t) − f (t)|2
t2 dt + log T

∫ T0

0

Eθ |fθ (t) − f (t)|2
t

dt

+ m
2p

2p + σ
2p

2p

np
(1 + log T )2 + 1

T 2
+ e−T 2

0 /8 log T (8.4) 

with constants . cp depending on p only. 

9 Quantitative Forms of Sudakov’s Theorem for the 
Kolmogorov Distance 

Let us specialize Lemma 8.2 to the value .p = 1, assuming that the random vector 
X is isotropic in . Rn (so that .m2 = 1). If . σ2 is bounded, then choosing 

. T = 4n, T0 = 4
√

log n,

the last three terms in (8.4) produce a quantity of order at most .(log n)2/n. In order 
to bound the integrals in (8.4), one may apply the classical Poincaré inequality on 
the unit sphere . Sn−1

.Eθ |u(θ)|2 ≤ 1

n − 1
Eθ |∇u(θ)|2 (9.1)
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to the mean zero functions .ut (θ) = fθ (t)− f (t). They are well defined and smooth 
on . Rn for any fixed value .t ∈ R and have gradients (by differentiating in (3.1)) given 
by 

. 〈∇ut (θ), w〉 = it E 〈X,w〉 eit〈X,θ〉, w ∈ C
n,

where we use the canonical inner product in the product complex space. By the 
isotropy assumption, 

. | 〈∇ut (θ), w〉 | ≤ |t |E | 〈X,w〉 | ≤ |t | |w|
for all w. Hence .|∇ut (θ)|2 ≤ t2 for any .θ ∈ R

n, so that by (9.1), 

.Eθ |fθ (t) − f (t)|2 ≤ t2

n − 1
. (9.2) 

Applying this inequality in (8.4) together with the first bound in (2.3) in order to 
replace F with . �, we obtain: 

Proposition 9.1 Given an isotropic random vector X in . Rn, 

. Eθ ρ2(Fθ ,�) ≤ c (1 + σ 2
2 )

(log n)2

n
.

Since .σ2 ≤ σ4, we thus have 

.
(
Eθ ρ2(Fθ ,�)

)1/2 ≤ c (1 + σ4)
log n√

n
(9.3) 

which sharpens (1.1). The latter bound will be an essential step in the proof of 
Theorem 1.3, while (1.1) is not strong enough. 

Let us now consider another scenario in Lemma 8.2, where the distribution of X 
is supported on the sphere .

√
n S

n−1. In this case, 

. Eθ |fθ (t) − f (t)|2 = Eθ |fθ (t)|2 − |f (t)|2
= EJn(t |X − Y |) − Jn(t

√
n)2

according to (3.3), while .σ4 = 0. Hence, in (8.4) with .p = 2 we arrive at the 
following preliminary bound which is needed for the proof of Theorem 1.1 in its 
second part. Here we use again that .m4 ≥ m2 ≥ 1. 

Corollary 9.2 Suppose that .|X| = √
n a.s., and Y is an independent copy of X. 

Then 

. cEθ ρ2(Fθ , F ) ≤
∫ 1

0

�n(t)

t2
dt + log n

∫ 4
√

log n

0

�n(t)

t
dt + (log n)2

n2
m4

4,

(9.4)
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where 

.�n(t) = EJn(t |X − Y |) − Jn(t
√

n)2. (9.5) 

10 Proof of Theorem 1.1 for the Kolmogorov Distance 

To study the integrals in (9.4), assume additionally that the random vector X in . Rn

is isotropic with mean zero and put 

. ξ = 〈X, Y 〉
n

,

where Y is an independent copy of X. Note that . 1
n2 m4

4 = Eξ4 which is present in 
the last term on the right-hand side of (9.4). 

Focusing on the first integral, we need to develop an asymptotic bound on . �n(t)

for .t ∈ [0, 1]. Since .|X − Y |2 = 2n(1 − ξ), (9.5) becomes 

. �n(t) = EJn

(
t
√

2n(1 − ξ)
) − (

Jn(t
√

n)
)2

.

We use the asymptotic formula (2.7), 

.Jn

(
t
√

n) =
(

1 − t4

4n

)
e−t2/2 + εn(t), t ∈ R, (10.1) 

where .εn(t) denotes a quantity of the form .O
(
n−2 min(1, t4)

)
with a universal 

constant in O. It implies a similar representation 

.
(
Jn

(
t
√

n)
)2 =

(
1 − t4

2n

)
e−t2 + εn(t). (10.2) 

Since .|ξ | ≤ 1 a.s., we also have 

. Jn

(
t
√

2n(1 − ξ)
) =

(
1 − t4

n
(1 − ξ)2

)
e−t2(1−ξ) + εn(t).

Hence, subtracting from .et2ξ the linear term .1 + t2ξ and adding, one may write 

.�n(t) = e−t2
E

((
1 − t4

n
(1 − ξ)2

)
et2ξ −

(
1 − t4

2n

))
+ εn(t)

= e−t2
E (U + V ) + εn(t)
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with 

. U = t4

n

(1

2
− (1 − ξ)2

)
+

(
1 − t4

n
(1 − ξ)2

)
· t2ξ,

V =
(

1 − t4

n
(1 − ξ)2

)
(et2ξ − 1 − t2ξ).

Using .Eξ = 0, .Eξ2 = 1
n

and hence .E |ξ |3 ≤ Eξ2 ≤ 1
n

, we find that in the interval 
.0 ≤ t ≤ 1, 

. EU = − t4

2n
− t4

n2 + 2t6

n2 − t6

n
Eξ3 = − t4

2n
+ εn(t).

Next write 

. V = W − t4

n
(1 − ξ)2 W, W = et2ξ − 1 − t2ξ.

Using .|ex − 1 − x| ≤ 2x2 for . |x| ≤ 1, we have .|W | ≤ 2t4ξ2. Hence, the expected 
value of the second term in the representation for V does not exceed .8t8/n2. 
Moreover, by Taylor’s expansion, 

. W = 1

2
t4ξ2 + 1

6
t6ξ3 + Rt8ξ4, R =

∞∑
k=4

t2k−8

k! ξk−4,

implying that 

. EW = t4

2n
+ t6

6
Eξ3 + Ct8

Eξ4,

where C is bounded by an absolute constant. Summing the two expansions, we 
arrive at 

. E (U + V ) = t6

6
Eξ3 + Ct8

Eξ4 + εn(t)

and therefore 

. 

∫ 1

0

�n(t)

t2
dt ≤ Eξ3 + cEξ4 + O(n−2).

Here .Eξ4 ≥ (Eξ2)2 = n−2, so the term .O(n−2) may be absorbed by the 4-th 
moment of . ξ . Since .Eξ3 ≥ 0, the bound (9.4) may be simplified to 

.cEθ ρ2(Fθ , F ) ≤ Eξ3 + Eξ4 + log n

∫ 4
√

log n

0

�n(t)

t
dt + (log n)2

n2
m4

4,
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that is, 

.cEθ ρ2(Fθ , F ) ≤ log n

∫ 4
√

log n

0

�n(t)

t
dt + Eξ3 + (log n)2

Eξ4. (10.3) 

Turning to the remaining integral (which is most important), let us express it in 
terms of the functions .gn(t) = Jn(t

√
2n) and 

. ψ(α) =
∫ T

0

gn(αt) − gn(t)

t
dt, 0 ≤ α ≤ √

2, T > 1,

which will be needed with .T = 4
√

log n and .α = √
1 − ξ . Namely, we have 

.

∫ T

0

�n(t)

t
dt = Eψ

(√
1 − ξ

) +
∫ T

0

Jn(t
√

2n) − (Jn(t
√

n))2

t
dt. (10.4) 

To proceed, we need to develop a Taylor expansion for .ξ → ψ
(√

1 − ξ
)

around 
zero in powers of . ξ . Recall that .gn(t) represents the characteristic function of the 
random variable .

√
2n θ1 on the probability space .(Sn−1, sn−1). This already ensures 

that .|gn(t)| ≤ 1 and 

. |g′
n(t)| ≤ √

2nE |θ1| ≤ √
2n (E θ2

1 )1/2 = √
2

for all .t ∈ R. Hence 

. |gn(αt) − gn(t)| ≤ √
2 |α − 1| |t | ≤ 2 |t |,

so that 

. |ψ(α)| ≤
∫ 1

0

|gn(αt) − gn(t)|
t

dt +
∫ T

1

|gn(αt) − gn(t)|
t

dt

≤ 2 + 2 log T < 4 log T (10.5) 

(since .T > e). In addition, .ψ(1) = 0 and 

. ψ ′(α) =
∫ T

0
g′

n(αt) dt = 1

α
(gn(αT ) − 1).

Therefore, we arrive at another expression 

.ψ(α) =
∫ α

1

gn(T x) − 1

x
dx =

∫ α

1

gn(T x)

x
dx − log α.
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For . |ε| ≤ 1, let  

. v(ε) =
∫ (1−ε)1/2

1

gn(T x)

x
dx,

u(ε) = ψ
(
(1 − ε)1/2) = v(ε) − 1

2
log(1 − ε),

so that .Eψ
(√

1 − ξ
) = E u(ξ). Applying the non-uniform bound . |gn(t)| ≤

5 (e−t2 + e−n/12), cf. (2.8), we have that, for .−1 ≤ ε ≤ 1
2 , 

. |v(ε)| ≤ sup
1√
2
≤x≤√

2

|gn(T x)|
∫ √

2

1√
2

1

x
dx

≤ sup
z≥T/

√
2

|gn(z)| log 2 ≤ 5 log 2 (e−T 2/2 + e−n/12) ≤ c

n8
,

where the last inequality is specialized to the choice .T = 4
√

log n. Using the Taylor 
expansion on the same interval for the log-function, we also have . − log(1 − ε) ≤
ε + 1

2 ε2 + 1
3 ε3 + 2

3 ε4. Combining the two inequalities, we get 

.u(ε) ≤ 1

2
ε + 1

4
ε2 + 1

6
ε3 + 1

3
ε4 + c

n8 , −1 ≤ ε ≤ 1

2
. (10.6) 

In order to involve the remaining interval . 12 ≤ ε ≤ 1 in the inequality of a similar 
type, recall that, by (10.5), .|u(ε)| ≤ 4 log T for all .|ε| ≤ 1. Hence, the inequality 
(10.6) will hold automatically for this interval, if we increase the coefficient in front 
of . ε4 to a suitable multiple of .log T . As a result, we obtain the desired inequality on 
the whole segment, that is, 

. u(ε) ≤ 1

2
ε + 1

4
ε2 + 1

6
ε3 + (c log T ) ε4 + c

n8
. − 1 ≤ ε ≤ 1.

In particular, 

. ψ
(√

1 − ξ
) ≤ 1

2
ξ + 1

4
ξ2 + 1

6
ξ3 + (c log T ) ξ4 + c

n8
,

and taking the expectation, we get 

.Eψ
(√

1 − ξ
) ≤ 1

4n
+ 1

6
Eξ3 + (c log T )Eξ4, (10.7) 

where the term .cn−8 was absorbed by the 4-th moment of . ξ .
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Now, let us turn to the integral 

. In =
∫ T

0

Jn(t
√

2n) − (Jn(t
√

n))2

t
dt,

appearing in (10.4), and recall the asymptotic formulas (10.1) and (10.2). After 
integration, the remainder term .εn(t) = O

(
n−2 min(1, t4)

)
will create an error of 

order at most .n−2 log T , up to which . In is equal to 

. −
∫ T

0

t4

2n
e−t2 dt

t
= − 1

4n

(
1 − (T 2 + 1) e−T 2

)
= − 1

4n
+ o(n−15).

Thus, 

. In = − 1

4n
+ O(n−2 log T ).

Applying this expansion together with (10.7) in (10.4), we therefore obtain that 

. 

∫ T

0

�n(t)

t
dt ≤ 1

6
Eξ3 + c log T Eξ4.

One can now apply this estimate in (10.3), and then we eventually arrive at 

. Eθ ρ2(Fθ , F ) ≤ c1 (log n)Eξ3 + c2 (log n)2
Eξ4.

By (2.3) with .p = ∞, a similar inequality remains to hold for the standard normal 
distribution function . � in place of F . This proves the inequality (1.4). ��

11 Relations Between L1, L2 and Kolmogorov Distances 

Given a random vector X in . Rn, let us now compare the . L2 and .L∞ distances on 
average, between the distributions . Fθ of the weighted sums .〈X, θ〉 and the typical 
distribution .F = EθFθ . Such information will be needed to derive appropriate lower 
bounds on .Eθ ρ(Fθ , F ). 

Proposition 11.1 If .|X| ≤ b
√

n a.s., then, for any .α ∈ [1, 2], 

.b−α/2
Eθ ωα(Fθ , F ) ≤ 14 (log n)α/4

Eθ ρα(Fθ , F ) + 8

n4
. (11.1) 

As will be clear from the proof, at the expense of a larger coefficient in front of 
.log n, the last term .n−4 can be replaced by .n−β for any prescribed value of . β.
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A relation similar to (11.1) is also true for the Kantorovich or .L1-distance 

. W(Fθ , F ) =
∫ ∞

−∞
|Fθ(x) − F(x)| dx

in place of . L2. We state it for the case .α = 1. 

Proposition 11.2 If .|X| ≤ b
√

n a.s., then 

.Eθ W(Fθ , F ) ≤ 14 b
√

log n Eθ ρ(Fθ , F ) + 8b

n4 . (11.2) 

Proof Put .Rθ(x) = Fθ(−x) + (1 − Fθ(x)) for .x > 0 and define similarly R on the 
basis of F . Using  

. (Fθ (−x) − F(−x))2 ≤ Fθ(−x)2 + F(−x)2,

(Fθ (x) − F(x))2 ≤ (1 − Fθ(x))2 + (1 − F(x))2,

we have 

. (Fθ (−x) − F(−x))2 + (Fθ (x) − F(x))2 ≤ Rθ(x)2 + R(x)2.

Hence, given .T > 0 (to be specified later on), we have 

. ω2(Fθ , F ) =
∫ T

−T

(Fθ (x) − F(x))2 dx +
∫

|x|≥T

(Fθ (x) − F(x))2 dx

≤ 2Tρ2(Fθ , F ) +
∫ ∞

T

Rθ (x)2 dx +
∫ ∞

T

R(x)2 dx.

It follows that, for any .α ∈ [1, 2], 

. ωα(Fθ , F ) ≤ (2T )
α
2 ρα(Fθ , F ) +

( ∫ ∞

T

Rθ (x)2 dx
) α

2 +
( ∫ ∞

T

R(x)2 dx
) α

2

and therefore, by Jensen’s inequality, 

. Eθ ωα(Fθ , F ) ≤ (2T )
α
2 Eθ ρα(Fθ , F )

+
( ∫ ∞

T

Eθ Rθ (x)2 dx
) α

2 +
( ∫ ∞

T

R(x)2 dx
) α

2
.

Next, by Markov’s inequality, for any .x > 0 and .p ≥ 1, 

.Rθ(x)2 ≤
(
E | 〈X, θ〉 |p

xp

)2 ≤ E | 〈X, θ〉 |2p

x2p
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and 

. EθRθ (x)2 ≤
(
E | 〈X, θ〉 |p

xp

)2 ≤ Eθ E | 〈X, θ〉 |2p

x2p
.

Since .R = EθRθ , a similar inequality holds true for R as well (by Cauchy’s 
inequality). Hence 

. Eθ ωα(Fθ , F ) ≤ (2T )
α
2 Eθ ρα(Fθ , F ) + 2

(
Eθ E | 〈X, θ〉 |2p

∫ ∞

T

1

x2p
dx

) α
2
.

When .θ = (θ1, . . . , θn) is treated as a random vector with distribution .sn−1, which is 
independent of X, the inner product .〈X, θ〉 has the same distribution as the random 
variable .|X| θ1. Therefore, recalling Lemma 2.5 and using the assumption . |X| ≤
b
√

n a.e., we have 

. Eθ E | 〈X, θ〉 |2p = E |X|2p
Eθ |θ1|2p ≤ 2 (2b2p)p,

so that 

. 2
(
Eθ

∫ ∞

T

E | 〈X, θ〉 |2p

x2p
dx

) α
2 ≤ 2

α
2 +1

(2p − 1)
α
2

(2b2p)
αp
2

T
α(2p−1)

2

.

Thus, 

. Eθ ωα(Fθ , F ) ≤ (2T )
α
2 Eθ ρα(Fθ , F ) + 2

α
2 +1

(2p − 1)
α
2

T
α
2

(2b2p

T 2

) αp
2

.

Let us choose .T = 2b
√

p in which case the above inequality becomes 

. Eθ ωα(Fθ , F ) ≤ (4b
√

p)
α
2 Eθ ρα(Fθ , F ) + 2α+1

(2p − 1)
α
2

(b
√

p)
α
2 2− αp

2 .

To simplify, one can use .
√

p ≤ 2p − 1 for .p ≥ 1 together with .2α+1 ≤ 8 and 

.2− αp
2 ≤ 2− p

2 (since .1 ≤ α ≤ 2), which leads to 

. Eθ ωα(Fθ , F ) ≤ (4b
√

p)
α
2 Eθ ρα(Fθ , F ) + 8 b

α
2 2−p/2.

Finally, choosing .p = pn = (8 log n)/ log 2, we arrive at (11.1).
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Now, turning to (11.2), we use the same functions . Rθ and R as before and write 

. W(Fθ , F ) =
∫ T

−T

|Fθ(x) − F(x)| dx +
∫

|x|≥T

|Fθ(x) − F(x)| dx

≤ 2Tρ(Fθ , F ) +
∫ ∞

T

Rθ (x) dx +
∫ ∞

T

R(x) dx,

which gives 

. Eθ W(Fθ , F ) ≤ 2T Eθ ρ(Fθ , F ) + 2
∫ ∞

T

R(x) dx.

By Markov’s inequality, for any .x > 0 and .p > 1, 

. Rθ(x) ≤ E | 〈X, θ〉 |p
xp

, R(x) = EθRθ (x) ≤ Eθ E | 〈X, θ〉 |p
xp

.

Hence 

. Eθ W(Fθ , F ) ≤ 2T Eθ ρ(Fθ , F ) + 2Eθ E | 〈X, θ〉 |p
∫ ∞

T

1

xp
dx.

Here, one may use once more the bound (2.10), which yields 

. Eθ E | 〈X, θ〉 |p = E |X|p Eθ |θ1|p ≤ 2
(
b2p

)p/2

and 

. Eθ W(Fθ , F ) ≤ 2T Eθ ρ(Fθ , F ) + 4

p − 1

(b2p)p/2

T p−1 .

Let us take .T = 2b
√

p in which case the above inequality becomes 

. Eθ W(Fθ , F ) ≤ 4b
√

p Eθ ρ(Fθ , F ) + 8b

√
p

p − 1
2−p.

Here we arrive at (11.2), by choosing again .p = pn and using .
√

pn < pn − 1. ��

12 Lower Bounds: Proof of Theorem 1.3 

A lower bound on .Eθ ρ2(Fθ ,�) which would be close to the upper bound (1.4) may  
be given with the help of the lower bound on .Eθ ω2(Fθ ,�). More precisely, this can 
be done in the case where the quantity . 1

n3/2 m3
3 + 1

n2 m4
4 asymptotically dominates
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.n−2 (in particular, when . m4 is essentially larger than 1). Combining the asymptotic 
expansion (1.3) of Theorem 1.1 with the bound (11.1) of Proposition 11.1 for . α = 2
and .b = 1, and recalling the second relation in (2.3) on the normal approximation 
for the typical distribution F , we therefore obtain: 

Proposition 12.1 If X is an isotropic random vector in . Rn with mean zero and such 
that .|X| = √

n a.s., then 

.
√

log n Eθ ρ2(Fθ ,�) ≥ c1

n3/2 m3
3 + c2

n2 m4
4 − c3

n2 . (12.1) 

The relation (11.2) for the Kantorovich distance W may be used to answer  
the following question: Is it possible to sharpen the lower bound (12.1) by  
replacing .Eθ ρ2(Fθ ,�) with .Eθ ρ(Fθ ,�)? To this aim, we will need an additional 
information about moments of .ω(Fθ , F ) of order higher than 2. 

Lemma 12.2 If X is isotropic and satisfies .|X| ≤ b
√

n, then 

.c
(
Eθ ω3(Fθ , F )

)1/3 ≤ (1 + σ4)
√

b
(log n)5/4

√
n

. (12.2) 

Proof For any distribution function G with finite first absolute moment, the function 
on the unit sphere .Sn−1 of the form .g(θ) = W(Fθ ,G) has a Lipschitz semi-norm 
.‖g‖Lip ≤ 1. Therefore, it admits a subgaussian large deviation bound 

.sn−1
{
W(Fθ ,G) ≥ m + r

} ≤ e−(n−1)r2/2, r ≥ 0, (12.3) 

where .m = Eθ W(Fθ ,G). Indeed, consider the elementary representation 

. W(Fθ ,G) ≡
∫ ∞

−∞
|Fθ(x) − G(x)| dx

= sup
u

[ ∫ ∞

−∞
u dFθ −

∫ ∞

−∞
u dG

]
,

where the supremum is running over all functions u on . R with .‖u‖Lip ≤ 1. For any 
such u, 

. Hu(θ) =
∫ ∞

−∞
u dFθ = E u(〈X, θ〉)

is Lipschitz on . Rn and therefore on .Sn−1. Moreover, .‖g‖Lip ≤ supu ‖Hu‖Lip ≤ 1. 
Hence, (12.3) is fulfilled as a consequence of fact that the logarithmic Sobolev 

constant for the uniform distribution on the unit sphere is equal to .n − 1 (cf. [21]). 
In particular, for any .r ≥ 0, 

.sn−1
{
W(Fθ , F ) ≥ m + r

} ≤ e−(n−1)r2/2
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with .m = Eθ W(Fθ , F ). In turn, the latter ensures that, for any .p ≥ 2, 

.

(
Eθ W(Fθ , F )p

)1/p ≤ m +
√

p√
n − 1

. (12.4) 

For the proof, put .ξ = (W(Fθ , F )−m)+. Using .�(x + 1) ≤ xx with .x = p/2 ≥ 1, 
we have 

. Eθ ξp =
∫ ∞

0
sn−1{ξ ≥ r} drp ≤

∫ ∞

0
e−(n−1) r2/2 drp

=
( √

2√
n − 1

)p

�
(p

2
+ 1

)
≤

( √
p√

n − 1

)p

≡ Ap (A ≥ 0).

Thus, .‖ξ‖p = (Eθ ξp)1/p ≤ A. Since .W(Fθ , F ) ≤ ξ + m, we conclude, by the 
triangle inequality, that 

. ‖W(Fθ , F )‖p ≤ ‖ξ‖p + m ≤ A + m,

that is, (12.4) holds. 
Let us proceed with one elementary general inequality, connecting the three 

distances, 

. ω2(Fθ , F ) =
∫ ∞

−∞
(Fθ (x) − F(x))2 dx

≤
∫ ∞

−∞
sup
x

|Fθ(x) − F(x)| |Fθ(x) − F(x)| dx = ρ(Fθ , F )W(Fθ , F ).

Putting .ω = ω(Fθ , F ), .W = W(Fθ , F ), .ρ = ρ(Fθ , F ), we thus have . ω3 ≤
W 3/2ρ3/2 and, by Hölder’s inequality with exponents .p = 4 and .q = 4/3, 

. ‖ω‖3 = (
Eθ ω3)1/3 ≤ (

Eθ W 6)1/12 (
Eθ ρ2)1/4

.

By (12.4) with . p = 6, we have  

. 
(
Eθ W 6)1/6 ≤ Eθ W + 4√

n
,

so that 

.‖ω‖3 ≤
(
Eθ W + 4√

n

)1/2 (
Eθ ρ2)1/4

.
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Applying Proposition 11.2 and noting that necessarily .b ≥ 1 in the isotrpic case, we 
get 

. ‖ω‖3 ≤ 4
√

b
(√

log n Eθ ρ + 1√
n

)1/2 (
Eθ ρ2)1/4

.

Here we employ the inequality (9.3) with F in place of . �, i.e. 

. Eθ ρ(Fθ , F ) ≤ (
Eθ ρ2(Fθ , F )

)1/2 ≤ c (1 + σ4)
log n√

n
.

Since the last expression dominates the term . 1√
n

, it follows that  

. ‖ω‖3 ≤ c
√

b
(√

log n (1 + σ4)
log n√

n

)1/2 (
(1 + σ4)

log n√
n

)1/2
,

and we arrive at the upper bound (12.2). ��
Let us now explain how this bound can be used to refine the lower bound (12.1). 

The argument is based on the following general elementary observation. Given a 
random variable . ξ , introduce the .Lp-norms .‖ξ‖p = (E |ξ |p)1/p. 

Lemma 12.3 If .ξ ≥ 0 with .0 < ‖ξ‖3 < ∞, then 

.E ξ ≥ 1

E ξ3
(E ξ2)2. (12.5) 

Moreover,

.P

{
ξ ≥ 1√

2
‖ξ‖2

}
≥ 1

8

(‖ξ‖2

‖ξ‖3

)6
. (12.6) 

Thus, in the case where .‖ξ‖2 and .‖ξ‖3 are equivalent within not too large factors, 
.‖ξ‖1 will be of a similar order. Moreover, . ξ cannot be much smaller than its mean 
. Eξ on a large part of the probability space (where it was defined). 

Proof Let . ξ be defined on the probability space .(�,F,P). By homogeneity with 
respect to . ξ , we may assume that .Eξ = 1, so that .dQ = ξdP is a probability 
measure. Then, (12.5) follows from the Cauchy inequality .(EQξ)2 ≤ EQξ2 on the 
space .(�,F,Q). 

To prove (12.6), given . r > 0, let .p = P{ξ ≥ r}. By Hölder’s inequality with 
exponents .3/2 and 3, 

.E ξ2 1{ξ≥r} ≤ (
E ξ3)2/3

p1/3.
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Hence, choosing .r = 1√
2

‖ξ‖2, we get 

. E ξ2 = E ξ2 1{ξ≥r} + E ξ2 1{ξ<r}

≤ (
E ξ3)2/3

p1/3 + r2 = (
E ξ3)2/3

p1/3 + 1

2
E ξ2.

Hence .p1/3 ≥ 1
2 (E ξ3)2/3 E ξ2 which is the desired bound (12.6). ��

We now combine Lemma 12.2 with Lemma 12.3 which is applied on the unit 
sphere to .ξ(θ) = ω(Fθ , F ) viewed as a random variable on the probability space 
.(Sn−1, sn−1). Recall that .b ≥ 1 in the isotropic case. 

Proposition 12.4 Let X be an isotropic random vector in . Rn such that . |X| ≤ b
√

n

a.s. Assume that 

. Eθ ω2(Fθ , F ) ≥ D

n

with some .D > 0. Then 

.Eθ ω(Fθ , F ) ≥ c

(1 + σ4)3 b
3
2

D2

(log n)
15
4
√

n
. (12.7) 

Moreover,

. sn−1

{
ω(Fθ , F ) ≥ 1√

2n

√
D

}
≥ c

(1 + σ4)6 b3

D3

(log n)
15
2

.

Proof of Theorem 1.3 The lower bound (12.7) implies a similar assertion about the 
Kolmogorov distance. Indeed, by Proposition 11.1 with . α = 1, we have  

. 
1√
b
Eθ ω(Fθ , F ) ≤ 14 (log n)1/4

Eθ ρ(Fθ , F ) + 8

n4 .

Using . 8
n4 < 1

n3 · 14 (log n)1/4, we therefore obtain that 

. Eθ ρ(Fθ , F ) ≥ 1

14
√

b (log n)1/4
Eθ ω(Fθ , F ) − 1

n3

≥ c

(1 + σ4)3 b2

D2

(log n)4
√

n
− 1

n3 .

To replace F with . �, it remains to recall the bound .ρ(F,�) ≤ c
n

(1+σ 2
4 ), cf. (2.3).

��
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In the isotropic case with .|X|2 = n a.s., the above lower bound is further 
simplified to 

. Eθ ρ(Fθ , F ) ≥ cD2

(log n)4
√

n
− 1

n3 .

On the other hand, let us note that the rates for the normal approximation of . Fθ that 
are better than .1/n (on average) cannot be obtained under the support assumption 
as above. That is, if .|X| = √

n a.s., then 

. Eθ ρ(Fθ ,�) ≥ c

n
.

Indeed, using the convexity of the distance function .G → ρ(G,�) and applying 
Jensen’s inequality, we have that .Eθ ρ(Fθ ,�) ≥ ρ(F,�). It remains to appeal to 
Proposition 2.6. 

13 Functional Examples 

13.1. For the trigonometric system as in item (i) of the Introduction (with n even), 
the linear forms 

. 〈X, θ〉 = √
2

n
2∑

k=1

(
θ2k−1 cos(kt) + θ2k sin(kt)

)
, θ = (θ1, . . . , θn) ∈ S

n−1,

represent trigonometric polynomials of degree at most n 
2 . The normalization√

2 is chosen in order to meet the requirement that the random vector X 
is isotropic with respect to the normalized Lebesgue measure P on � = 
(−π, π). Moreover, in this case |X| =  

√
n, so that σ4 = 0. Hence, by 

Theorem 1.1, we have the upper bounds (1.6). On the other hand, since for all 
k ≤ n 

2 

. |Xk(t) − Xk(s)| ≤ k
√

2 |t − s| ≤ n√
2

|t − s|, t, s ∈ �,

the Lipschitz condition (7.1) is fulfilled with L(t) = t√
2 
. Hence, Proposi-

tion 7.1 is applicable and yields the lower bound 

. Eθ ω2(Fθ ,�) ≥ c1

n
− c2

n2
≥ c3

n
,

where in the last inequality we assume that n ≥ n0 for some universal 
integer n0. This restriction may be dropped, since the distances ω2(Fθ ,�)
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are bounded away from zero for n < n0 uniformly over all θ ∈ S
n−1, just due 

to the property that the distributions Fθ are supported on the bounded interval 
[−√

n0, 
√

n0]. Note that the above lower estimate (may also be obtained by 
applying Theorem 1.1. Thus, for all n ≥ 2, 

.
c0

n
≤ Eθ ω2(Fθ ,�) ≤ c1

n
. (13.1) 

Applying Proposition 12.4, we obtain similar bounds for the L1-norm 
(modulo logarithmic factors). Namely, it gives 

.
c0

(log n)
15
4
√

n
≤ Eθ ω(Fθ ,�) ≤ c1√

n
. (13.2) 

We also get an analogous pointwise lower bound on the “essential” part of
the unit sphere.

A similar statement is also true for the Kolmogorov distance. Here, the
upper bound is provided in Proposition 9.1, while the lower bound is obtained 
when combining Theorem 1.3 with the left inequality in (13.1). That is, 

.
c0

(log n)4
√

n
≤ Eθ ρ(Fθ ,�) ≤ (

Eθ ρ2(Fθ ,�)
)1/2 ≤ c1 log n√

n
. (13.3) 

13.2. Analogous results remain true for the cosine trigonometric system X = 
(X1, . . . , Xn) as in item (ii). Due to the normalization

√
2, the distribution of 

X is isotropic in Rn. The property |X| =  
√

n is not true anymore; however, 
there is a pointwise bound |X| ≤  

√
2n. In addition, the variance functional 

σ 2 
4 does not depend on n. Indeed, write 

. X2
k = 2 cos2(kt) = 1 + cos(2kt) = 1 + e2ikt + e−2ikt

2
,

so that 

. 2 (|X|2 − n) =
∑

0<|k|≤n

e2ikt , 4 (|X|2 − n)2 =
∑

0<|k|,|l|≤n

e2i(k+l)t .

It follows that 

. 4 Var(|X|2) =
∑

0<|k|,|l|≤n

E e2i(k+l)t =
∑

0<|k|≤n, l=−k

1 = 2n.

Hence 

.σ 2
4 = 1

n
Var(|X|2) = 1

2
.
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As before, the Lipschitz condition is fulfilled with the function L(t) = 
t
√

2. Therefore, with similar arguments we obtain all the bounds (13.1)– 
(13.3). 

Let us also note that the sums
∑n 

k=1 cos(kt) remain bounded for growing 
n (for any fixed 0 < t  < π ). Hence the normalized sums 

. Sn = 1√
n

n∑
k=1

Xk =
√

2√
n

n∑
k=1

cos(kt),

which correspond to 〈X, θ〉 with equal coefficients, are convergent to zero 
pointwise on � as n → ∞. In particular, they fail to satisfy the central limit 
theorem. 

13.3. An example closely related to the cosine trigonometric system is represented 
by the normalized Chebyshev’s polynomials Xk as in item (iii), which we 
consider for k = 1, 2, . . . , n. These polynomials are orthonormal on the 
interval � = (−1, 1) with respect to the probability measure 

. 
dP(t)

dt
= 1

π
√

1 − t2
, −1 < t < 1,

cf. e.g. [17]. Similarly to 13.2, for the random vector X = (X1, . . . , Xn) we 
find that 

. 4 (|X|2 − n)2 =
∑

0<|k|,|l|≤n

exp{2i(k + l) arccos t}.

It follows that 

. 4 Var(|X|2) =
∑

0<|k|,|l|≤n

E exp{2i(k + l) arccos t} =
∑

0<|k|≤n

1 = 2n,

so that σ 2 
4 = 1 

n Var(|X|2) = 1 
2 . In addition, for all k ≤ n, 

. |Xk(t) − Xk(s)| ≤ k
√

2 | arccos t − arccos s|, t, s ∈ �,

which implies that the Lipschitz condition is fulfilled with the function L(t) =√
2 arccos t . As a result, we obtain the bounds (13.1)–(13.3) as well. 

13.4. Turning to item (iv), consider the functions of the form 

.Xk(t, s) = 
(kt + s),
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assuming that 
 is a 1-periodic measurable function on the real line such that 

. 

∫ 1

0

(x) dx = 0 and

∫ 1

0

(x)2 dx = 1.

These conditions ensure that the random vector X = (X1, . . . , Xn) is 
isotropic in Rn with respect to the Lebesgue measure P on the square
� = (0, 1) × (0, 1), with EXk = 0. In fact, as was emphasized in [5], 
{Xk}∞k=1 represents a strictly stationary sequence of pairwise independent 
random variables on �. The latter implies in particular that, if 
 has finite 
4-th moment on (0, 1), the variance functional 

. σ 2
4 = 1

n
Var(|X|2) =

∫ 1

0

(x)4 dx − 1

is finite and does not dependent on n. Hence, by Theorem 1.1, cf. (1.6), the 
upper bounds in (13.1)–(13.3) hold true with a constant c1 depending on the 
4-th moment of 
 on (0, 1). 

In addition, if the function 
 has finite Lipschitz constant ‖
‖Lip, then for 
all (t1, t2) and (s1, s2) in �, 

. |Xk(t1, t2) − Xk(s1, s2)| ≤ ‖
‖Lip
(
k |t1 − s1| + |t2 − s2|

)
.

This means that the Lipschitz condition (7.5) is fulfilled with linear functions 
L1 and L2. Hence, one may apply Proposition 7.5 giving the lower bound 

. Eθ ω2(Fθ , F ) ≥ c


n
− c (1 + σ 4

4 )

n2

in full analogy with item (i). Hence Eθ ω2(Fθ ,�)  ≥ c′



n for all n ≥ n0, 
where the positive constants c
 , c′


 , and an integer n0 ≥ 1 depend on the 
distribution of 
 only. Since the collection {Fθ } is separated from � in the 
weak sense for n < n0 (by the uniform boundedness of Xk’s), the latter bound 
holds true for all n ≥ 2. Also, as Lipschitz functions on (0, 1) are bounded, 
we have |X| ≤ b

√
n with b = supx |f (x)|, and one may apply Theorem 1.3. 

Let us summarize: The upper bounds in (13.1)–(13.3) hold true, if 
 has 
finite 4-th moment under the uniform distribution on (0, 1). The lower bounds 
hold under an additional assumption that 
 has a finite Lipschitz semi-norm 
(with constants depending on 
 only). 

Choosing, for example, 
(t) = cos t , we obtain the system Xk(t, s) = 
cos(kt + s), which is closely related to the cosine trigonometric system. 
The main difference is however the property that Xk’s are now pairwise 
independent. Nevertheless, the normalized sums 1√

n

∑n 
k=1 cos(kt + s) fail 

to satisfy the central limit theorem.
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14 The Walsh System; Empirical Measures 

14.1. The Walsh system on the discrete cube � = {−1, 1}d with the uniform count-
ing measure P as in item (v) in Introduction forms a complete orthonormal 
system in L2(�, P). Note that each Xτ with τ 
= ∅  is a symmetric Bernoulli 
random variable taking the values −1 and 1 with probability 1 

2 . For simplicity, 
we exclude from this family the constant X∅ = 1 and consider X = {Xτ }τ 
=∅ 
as a random vector in Rn of dimension n = 2d − 1. As before, Fθ denotes the 
distribution function of the linear form 

. 〈X, θ〉 =
∑
τ 
=∅

θτXτ , θ = {θτ }τ 
=∅ ∈ S
n−1.

Since |Xτ | =  1 and thus |X| = √
n, for the study of the asymptotic behav-

ior of the L2-distance ω(Fθ ,�)  on average, one may apply Theorem 1.1. 
Let Y be an independent copy of X, which we realize on the product space
�2 = � × � with product measure P2 = P × P by 

. Xτ (t, s) =
∏
k∈τ

tk, Yτ (t, s) =
∏
k∈τ

sk t = (t1, . . . , td ), s = (s1, . . . , sd) ∈ �.

Then the inner product 

. 〈X, Y 〉 =
∑
τ 
=∅

Xτ (t, s)Yτ (t, s) = −1 +
d∏

k=1

(1 + tksk)

takes only two values, namely 2d − 1 in the case t = s, and −1 if  t 
= s. 
Hence 

. E 〈X, Y 〉3 = (2d − 1)3 2−d + (1 − 2−d) = n3

n + 1
+

(
1 − 1

n + 1

)
∼ n2

and 

. E 〈X, Y 〉4 = (2d − 1)4 2−d + (1 − 2−d) = n4

n + 1
+

(
1 − 1

n + 1

)
∼ n3.

In other words, m3 
3 ∼ 

√
n and m4 

4 ∼ n as n → ∞. As a result, we may 
conclude that all inequalities in (13.1)–(13.3) are fulfilled for this system as 
well. 

14.2. Here is another interesting example leading to the similar rate of 
normal approximation. Let e1, . . . , en denote the canonical basis in Rn. 
Assuming that the random vector X = (X1, . . . , Xn) takes only n values,√

n e1, . . . ,  
√

n en, each with probability 1/n, the linear form 〈X, θ〉 also
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takes n values, namely,
√

n θ1, . . . ,
√

n θn, each with probability 1/n, for any 
θ = (θ1, . . . , θn) ∈ Sn−1. That is, as a measure, the distribution of 〈X, θ〉 is 
described as 

. Fθ = 1

n

n∑
k=1

δ√
n θk

,

which may be viewed as an empirical measure based on the observations 
Zk = 

√
n θk , k = 1, . . . , n. Each Zk is almost standard normal, while 

jointly they are nearly independent (we have already considered in detail its 
characteristic functions Jn(t

√
n)). 

Just taking a short break, let us recall that when Zk are indeed standard 
normal and independent, it is well-known that the empirical measures Gn =
1 
n

∑n 
k=1 δZk approximate the standard normal law � with rate 1/

√
n with 

respect to the Kolmogorov distance. More precisely, E Gn = � and there is a 
subgaussian deviation bound (cf. [22]) 

. P
{√

n ρ(Gn,�) ≥ r
} ≤ 2e−2r2

, r ≥ 0.

In particular, E ρ(Gn,�)  ≤ c√
n . Note that the characteristic function gn(t) = 

1 
n

∑n 
k=1 e

itZk of the measure Gn has mean g(t) = e−t2/2 and variance 

. E |gn(t) − g(t)|2 = 1

n
Var(eitZ1) = 1

n

(
1 − |E eitZ1 |2) = 1

n

(
1 − e−t2)

.

Hence, applying Plancherel’s theorem and using the identity (4.7) for the  
functions ψr(α) with r = α = 0, we also have 

. Eω2(Gn,�) = 1

2π

∫ ∞

−∞
E

∣∣∣gn(t) − g(t)

t

∣∣∣2
dt

= 1

2πn

∫ ∞

−∞
1 − e−t2

t2
dt = 1

n
√

π
.

Thus, on average the L2-distance ω(Gn,�)  is of order 1/
√

n as well. 
Similar properties may be expected for the random variables Zk = √

n θk 
and hence for the random vector X. Note that |X| = √

n, while 

.E 〈X, θ〉2 = 1

n

n∑
k=1

(
√

n θk)
2 = 1, θ ∈ S

n−1,
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so that X is isotropic. We now involve an asymptotic formula of Corollary 5.1 
which yields 

. Eθ ω2(Fθ ,�) = 1√
π

(
1 + 1

4n

)
E

(
1 − (1 − ξ)1/2

)
− 1

8n
√

π
+ O

( 1

n2

)
,

where ξ = 〈X,Y 〉
n with Y being an independent copy of X. By the definition, 

ξ takes only two values, 1 with probability 1 
n and 0 with probability 1 − 1 

n
. 

Hence, the last expectation is equal to 1 
n

, and we get 

. Eθ ω2(Fθ ,�) = 7/8

n
√

π
+ O

( 1

n2

)
.

As for the Kolmogorov distance, one may apply again Theorem 1.3, which 
leads to the two-sided bound (13.3). Apparently, both logarithmic terms can 
be removed. Their appearance here is explained by the use of the Fourier tools 
(in the form of the Berry-Esseen bounds), while the proof of the Dvoretzky-
Kiefer-Wolfowitz inequality on ρ(Gn,�)  in [13] is based on the entirely 
different arguments. 

15 Improved Rates for Lacunary Systems 

An orthonormal sequence of random variables .{Xk}∞k=1 in .L2(�,F,P) is called a 
lacunary system of order .p > 2, if for any sequence .(ak) in . �2, the series . 

∑∞
k=1 akXk

converges in .Lp-norm to an element of .Lp(�,F,P). This property is equivalent to 
the validity of the Khinchine-type inequality 

.
(
E |a1X1 + · · · + anXn|p

)1/p ≤ Mp (a2
1 + · · · + a2

n)
1/2 (15.1) 

for arbitrary .ak ∈ R with some constant .Mp independent of n and the choice of the 
coefficients . ak . For basic properties of such systems we refer an interested reader to 
the books [16, 17]. 

Starting from an orthonormal lacunary system of order .p = 4, consider the 
random vector .X = (X1, . . . , Xn). According to Theorem 1.1, if .|X|2 = n a.s. 
and .EX = 0, then 

.cEθ ω2(Fθ ,�) ≤ 1

n3
E 〈X, Y 〉3 + 1

n4
E 〈X, Y 〉4 , (15.2)
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where Y is an independent copy of X. A similar bound 

.cEθ ρ2(Fθ ,�) ≤ log n

n3 E 〈X, Y 〉3 + (log n)2

n4 E 〈X, Y 〉4 (15.3) 

also holds for the Kolmogorov distance. As easily follows from (15.1), 

. E | 〈X, Y 〉 |p ≤ M
2p
p np/2.

In particular, 

. E | 〈X, Y 〉 |3 ≤ M6
3 n3/2, E 〈X, Y 〉4 ≤ M8

4 n2.

Hence, the bounds (15.2) and (15.3) lead to the estimates 

. cEθ ω2(Fθ ,�) ≤ 1

n3/2 M6
3 + 1

n2 M8
4 ,

cEθ ρ2(Fθ ,�) ≤ log n

n3/2 M6
3 + (log n)2

n2 M8
4 .

Thus, if .M4 is bounded, both distances are at most of order .n−3/4 on average 
(modulo a logarithmic factor). Moreover, if 

.�3(n) ≡ E 〈X, Y 〉3 =
∑

1≤i1,i2,i3≤n

(
EXi1Xi2Xi3

)2 (15.4) 

is bounded by a multiple of n, then these distances are on average at most . 1/n

(modulo a logarithmic factor in the case of . ρ). 
For an illustration, on the interval .� = (−π, π) with the uniform measure 

.dP(t) = 1
2π

dt , consider a finite trigonometric system .X = (X1, . . . , Xn) with 
components 

. X2k−1(t) = √
2 cos(mkt),

X2k(t) = √
2 sin(mkt), k = 1, . . . , n/2,

where .mk are positive integers such that .mk+1
mk

≥ q > 1 (assuming that n is even). 

Then X is an isotropic random vector satisfying .|X|2 = n and .EX = 0, and with 
.M4 bounded by a function of q only. For evaluation of the moment .�3(n), one may 
use the identities 

. cos t = Eε eiεt , sin t = 1

i
Eε ε eiεt ,
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where . ε is a Bernoulli random variable taking the values .±1 with probability . 12 . 
Let .ε1, ε2, ε3 be independent copies of . ε. Using the property that .ε1ε3 and .ε2ε3 are 
independent, the first identity implies that, for all integers .1 ≤ n1 ≤ n2 ≤ n3, 

. E cos(n1t) cos(n2t) cos(n3t) = Eε E exp{i(ε1n1 + ε2n2 + ε3n3) t}
= Eε I {ε1n1 + ε2n2 + ε3n3 = 0}
= Eε I {ε1n1 + ε2n2 = n3} = 1

4
I {n1 + n2 = n3},

where .Eε means the expectation over .(ε1, ε2, ε3), and where .I {A} denotes the 
indicator of the event A. Similarly, involving also the identity for the sine function, 
we have 

. E sin(n1t) sin(n2t) cos(n3t) = −Eε E ε1ε2 exp{i(ε1n1 + ε2n2 + ε3n3) t}
= −Eε ε1ε2 I {ε1n1 + ε2n2 + ε3n3 = 0}
= −Eε ε1ε2 I {ε1n1 + ε2n2 = n3}
= −1

4
I {n1 + n2 = n3},

. E sin(n1t) cos(n2t) sin(n3t) = −Eε E ε1ε3 exp{i(ε1n1 + ε2n2 + ε3n3) t}
= −Eε ε1ε3 I {ε1n1 + ε2n2 + ε3n3 = 0}
= −Eε ε1 I {ε1n1 + ε2n2 = n3}
= −1

4
I {n1 + n2 = n3},

. E cos(n1t) sin(n2t) sin(n3t) = −Eε E ε2ε3 exp{i(ε1n1 + ε2n2 + ε3n3) t}
= −Eε ε2ε3 I {ε1n1 + ε2n2 + ε3n3 = 0}
= −Eε ε2 I {ε1n1 + ε2n2 = n3}
= −1

4
I {n1 + n2 = n3}.

On the other hand, if the sine function appears in the product once or three times, 
such expectations will be vanishing. They are thus vanishing in all cases where 
.n1 + n2 
= n3, and do not exceed . 14 in absolute value for any combination of sine 
and cosine terms in all cases with .n1 + n2 = n3. Therefore, the moment .�3(n) in 
(15.4) is bounded by a multiple of 

.T3(n) = card
{
(i1, i2, i3) : 1 ≤ i1 ≤ i2 < i3 ≤ n, mi1 + mi2 = mi3

}
.
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One can now involve the lacunary assumption. If .q ≥ 2, the property . i1 ≤ i2 < i3
implies .mi1 + mi2 < mi3 , so that .T3(n) = �3(n) = 0. In the case .1 < q < 2, define 
. Aq to be the (finite) collection of all couples .(k1, k2) of positive integers such that 

. q−k1 + q−k2 ≥ 1.

By the lacunary assumption, if .1 ≤ i1 ≤ i2 < i3 ≤ n, we have  

. mi1 + mi2 ≤ (
q−(i3−i1) + q−(i3−i2)

)
mi3 < mi3,

as long as the couple .(i3 − i1, i2 − i1) is not in . Aq . Hence, 

. T3(n) ≤ card
{
(i1, i2, i3) : 1 ≤ i1 ≤ i2 < i3 ≤ n, (i3 − i1, i2 − i1) ∈ Aq

}
≤ n card(Aq) ≤ cqn

with constant depending on q only. Returning to (15.2) and (15.3), we then obtain: 

Proposition 15.1 For the lacunary trigonometric system X of an even length n and 
with parameter .q > 1, we have 

. Eθ ω2(Fθ ,�) ≤ cq

n2 , Eθ ρ2(Fθ ,�) ≤ cq (log n)2

n2 ,

where the constants . cq depend q only. 

In this connection one should mention a classical result of Salem and Zygmund 
concerning distributions of the lacunary sums 

. Sn =
n∑

k=1

(ak cos(mkt) + bk sin(mkt))

with an arbitrary prescribed sequence of the coefficients .(ak)k≥1 and .(bk)k≥1. 
Assume that .mk+1

mk
≥ q > 1 for all k and put 

. v2
n = 1

2

n∑
k=1

(a2
k + b2

k) (vn ≥ 0),

so that the normalized sums .Zn = Sn/vn have mean zero and variance one under 
the measure . P. It was shown in [25] that . Zn are weakly convergent to the standard 
normal law, i.e., their distributions . Fn under . P satisfy .ρ(Fn,�) → 0 as .n → ∞, 

if and only if . a
2
n+b2

n

v2
n

→ 0 (in fact, the weak convergence was established on every 

subset of . � of positive measure). 
Restricting to the coefficients .θ2k−1 = ak/vn, .θ2k = bk/vn, Salem-Zygmund’s 

theorem may be stated as the assertion that .ρ(Fθ ,�) is small, if and only if .‖θ‖∞ =



122 S. G. Bobkov et al.

max1≤k≤n |θk| is small. The latter condition naturally appears in the central limit 
theorem for weighted sums of independent identically distributed random variables. 
Thus, Proposition 15.1 complements this result in terms of the rate of convergence in 
the mean on the unit sphere. It would be interesting to describe explicit coefficients 
. θk , for which we get a standard rate of normal approximation (perhaps, using other 
approaches such as the Stein method, cf. e.g. [14]). 

The result of [25] was generalized in [26]; it turns out there is no need to assume 
that all . mk are integers, and the asymptotic normality is preserved for real . mk such 
that .infk

mk+1
mk

> 1. However, in this more general situation, the rate .1/n as in 

Proposition 15.1 is no longer true (although the rate .1/
√

n is valid). The main reason 
is that the means 

. EX2k−1 = √
2E cos(mkt) = √

2
sin(πmk)

πmk

may be non-zero. For example, choosing .mk = 2k + 1
2 , we obtain an orthonormal 

system with .EX2k = 0, while 

. EX2k−1 = 2
√

2

π (2k+1 + 1)
.

Hence 

. E 〈X, Y 〉 = |EX|2 = 8

π2

n∑
k=1

1

(2k+1 + 1)2 → c (n → ∞)

for some absolute constant .c > 0 (where Y is an independent copy of X). In this 
situation, as was already mentioned in (5.3), cf. Remark 5.3, we have a lower bound 

. Eθ ω2(Fθ , F ) ≥ c

2
√

π n
+ O

( 1

n2

)
.

Since .E 〈X, Y 〉3 = O(n) and .E 〈X, Y 〉4 = O(n2), this inequality may actually be 
replaced with equality, according to (5.2). A similar asymptotic holds as well when 
F is replaced with . �. 

16 Improved Rates for Independent and Log-Concave 
Summands 

Let .X = (X1, . . . , Xn) be an isotropic random vector in . Rn with mean zero. If the 
components . Xk are independent, the normal approximation for the distributions . Fθ

of the weighted sums 

.Sθ = θ1X1 + · · · + θnXn, θ ∈ S
n−1,
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may be controlled by virtue of the Berry-Esseen theorem under the 3-rd moment 
assumption. Namely, this theorem provides an upper bound 

.ρ(Fθ ,�) ≤ c

n∑
i=1

|θi |3 E |Xi |3 (16.1) 

(cf. e.g. [23, 24]). Since .E |Xi |3 ≥ 1, the sum in (16.1) is at least . 1√
n

. On the other 
hand, (16.1) yields an upper estimate on average 

.Eθ ρ(Fθ ,�) ≤ cβ3√
n
, β3 = max

1≤i≤n
E |Xi |3, (16.2) 

which is consistent with the standard rate.
As it turns out, the relations (16.1) and (16.2) are far from being optimal for most 

of . θ , as the following statement due to Klartag and Sodin shows. 

Theorem 16.1 ([20]) If the random variables .X1, . . . , Xn are independent, have 
mean zero, variance one, and finite 4-th moments, then 

.Eθ ρ(Fθ ,�) ≤ cβ4

n
, β4 = 1

n

n∑
i=1

EX4
i . (16.3) 

Moreover, for any .r ≥ 0, 

. sn−1
{
nρ(Fθ ,�) ≥ cβ4r

} ≤ 2 e−√
r .

In the i.i.d. case, .β4 = EX4
1, and we obtain an upper bound of order at most .1/n. 

In fact, in the i.i.d. case, the relation (16.3) may be further sharpened under the 
5-th moment assumption, if .EX3

1 = 0, and if .�(x) is slightly modified to 

. G(x) = �(x) − β4 − 3

8(n + 2)
(x3 − 3x) ϕ(x), x ∈ R,

where .ϕ(x) = 1√
2π

e−x2/2 is the standard normal density. 

Theorem 16.2 If the random variables .X1, . . . , Xn are independent, identically 
distributed, and have moments .EX1 = 0, .EX2

1 = 1, .EX3
1 = 0, .EX4

1 = β4, 
.E |X1|5 = β5 < ∞, then 

.Eθ ρ(Fθ ,G) ≤ cβ5

n3/2 . (16.4)
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Moreover, for any .r ≥ 0, 

. sn−1

{
n3/2ρ(Fθ ,G) ≥ cβ4r

}
≤ 2 exp{−r2/5}.

We refer an interested reader to [4] and [11]. In the i.i.d. case, both inequalities 
(16.3) and (16.4) are sharp in the following sense. If .α3 = EX3

1 
= 0 and .β4 < ∞, 
then, for any function G of bounded total variation, such that .G(−∞) = 0 and 
.G(∞) = 1, we have  

. Eθ ρ(Fθ ,G) ≥ c

n

with a constant .c > 0 depending on . α3 and . β4. Similarly, if .α3 = 0, .β4 
= 3, 
.β5 < ∞, then 

. Eθ ρ(Fθ ,G) ≥ c

n3/2 ,

where the constant .c > 0 depends on . β4 and . β5 only. 
In the upper bounds such as (16.3), the independence assumption may be 

replaced with closely related hypotheses. The random vector X is said to have a 
log-concave distribution, when it has a density of the form .p(x) = e−V (x) where 
.V : R

n → (−∞,∞] is a convex function. Recall that the distribution of X is 
coordinatewise symmetric, if 

. p(ε1x1, . . . , εnxn) = p(x1, . . . , xn), xi ∈ R,

for any choice of signs .εi = ±1. The following theorem sharpening (16.1) is due to 
Klartag. 

Theorem 16.3 ([18]) Suppose that the isotropic random vector . X = (X1, . . . , Xn)

in .Rn has a coordinatewise symmetric log-concave distribution. For all . θ =
(θ1, . . . , θn) ∈ S

n−1, 

.‖Fθ − �‖TV ≤ c

n∑
i=1

θ4
i . (16.5) 

Here, the total variation distance is understood in the usual sense as 

. ‖Fθ − �‖TV =
∫ ∞

−∞
|pθ(x) − ϕ(x)| dx,

where . pθ denotes the density of . Sθ . By the assumptions, . pθ is symmetric about 
the origin and is log-concave for any .θ ∈ S

n−1. Note that, by the coordinatewise 
symmetry, the isotropy assumption is reduced to the moment condition . EX2

i = 1
(.1 ≤ i ≤ n).
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In particular, it follows from (16.5) that 

.Eθ ρ(Fθ ,�) ≤ Eθ ‖Fθ − �‖TV ≤ c

n
. (16.6) 

17 Improved Rates Under Correlation-Type Conditions 

Up to a logarithmically growing term, the improved rate as in the upper bound (16.3) 
can be achieved under more flexible correlation-type conditions (in comparison with 
independence). For example, one may consider an optimal value .� = �(X) in the 
relation 

.Var

( n∑
i,j=1

aijXiXj

)
≤ �

n∑
i,j=1

a2
ij (aij ∈ R), (17.1) 

which we call that the random vector .X = (X1, . . . , Xn) satisfies a second order 
correlation condition with constant . �. This quantity is finite as long as the moment 
.E |X|4 is finite. 

To relate . � to the moment-type characteristics which we discussed before, 
one may apply (17.1) with .aij = δij or (as another option) with .aij = θiθj , 
.θ = (θ1, . . . , θn) ∈ S

n−1. This gives that 

. σ 2
4 ≤ �, m2

4 ≤ sup
θ∈Sn−1

ES4
θ ≤ 1 + �,

where in the last inequality we should assume that .ES2
θ = 1 for all . θ (i.e. X is 

isotropic). In the latter case, necessarily .� ≥ n−1
n

, so that . � is bounded away from 
zero. 

If the distribution of X is “regular” in some sense, one may also bound . � from 
above. For example, this is the case when it shares a Poincaré-type inequality 

.λ1Var(u(X)) ≤ E |∇u(X)|2, (17.2) 

which is required to hold in the class of all bounded, smooth functions u on . Rn with 
a constant .λ1 > 0 independent of u (called the spectral gap). We then have 

.� ≤ 4

λ2
1

, � ≤ 4

λ1
, (17.3) 

where in the second inequality we assume that X is isotropic.
The following relation is established in [9].
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Theorem 17.1 If the distribution of X is isotropic and symmetric about the origin, 
then 

.Eθ ρ(Fθ ,�) ≤ c�
log n

n
. (17.4) 

The proof is based on the second order spherical concentration phenomenon 
which was developed in [6] with the aim of applications to randomized central 
limit theorems. It indicates that the deviations of any smooth function .u(θ) on . Sn−1

from the mean .Eθu(θ) are at most of the order .1/n, provided that u is orthogonal 
in .L2(Rn, sn−1) to all linear functions and has a “bounded” Hessian (the matrix 
of second order partial derivatives). Being applied to the characteristic functions 
.u(θ) = fθ (t), this property yields an upper bound 

. Eθ |fθ (t) − f (t)|2 ≤ c�t4

n2

on every interval .|t | ≤ An1/5 with constants .c > 0 depending on the parameter 
.A ≥ 1 only. This estimate can be used to bound the integrals in (8.4) to get a similar 
variant of (17.4). 

The symmetry hypothesis in Theorem 17.1 may be dropped, if . � is replaced 
by .λ−1

1 which is a larger quantity according to (17.3). In addition, one can control 
large deviations of the distance .ρ(Fθ ,�) for most of the directions . θ (rather than 
on average). The corresponding assertions are obtained in [10]. 

Theorem 17.2 Let X be an isotropic random vector in . Rn with mean zero and a 
positive Poincaré constant . λ1. Then 

.Eθ ρ(Fθ ,�) ≤ cλ−1
1

log n

n
. (17.5) 

Moreover, for all .r > 0, 

. sn−1

{
ρ(Fθ ,�) ≥ cλ−1

1
log n

n
r
}

≤ 2 e−√
r .

The logarithmic term in (17.5) may be removed using the less sensitive .L2-
distance: 

. Eθ ω2(Fθ ,�) ≤ c

λ2
1 n2

.

There is an extensive literature devoted to bounding the spectral gap . λ1 from 
below. In particular, it is positive for any log-concave probability distribution on . Rn. 
A well-known conjecture raised by Kannan, Lovász and Simonovits asserts that . λ1
is actually bounded away from zero, as long as the random vector X has an isotropic
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log-concave distribution (cf. [15]). The best known dimensional lower bound up to 
date is due to Klartag and Lehec [19] who showed that 

. λ1 ≥ c

(log n)α

for some absolute positive constants c and . α (one may take .α = 10). Applying this 
bound in Theorem 17.2, we therefore obtain: 

Corollary 17.3 Let X be an isotropic random vector in . Rn with mean zero and a 
log-concave probability distribution. Then with some absolute positive constants c 
and . α

.Eθ ρ(Fθ ,�) ≤ c(log n)α

n
. (17.6) 

Thus, there is a certain extension of Klartag’s bound (16.6) at the expense 
of a logarithmic factor to the entire class of isotropic log-concave probability 
distributions on . Rn. 

One may also argue in the opposite direction: upper bounds of the form 

. Eθ ρ(Fθ ,�) ≤ c(log n)β

n
, β > 0,

in the class of log-concave probability distributions on . Rn imply lower bounds . λ1 ≥
c (log n)−β ′

with some . β ′ > 0, cf. [9]. 

Acknowledgments Research was supported by SFB 1283, BSF grant 2016050, and NSF grant 
DMS-2154001. 

References 

1. M. Anttila, K. Ball, I. Perissinaki, The central limit problem for convex bodies. Trans. Am. 
Math. Soc. 355(12), 4723–4735 (2003) 

2. S.G. Bobkov, On concentration of distributions of random weighted sums. Ann. Probab. 31(1), 
195–215 (2003) 

3. S.G. Bobkov, Closeness of probability distributions in terms of Fourier-Stieltjes transforms. 
Russ. Math. Surv. 71(6), 1021–1079 (2016). Translated from: Uspekhi Matem. Nauk, vol. 71, 
issue 6 (432), (2016), 37–98 

4. S.G. Bobkov, Edgeworth corrections in randomized central limit theorems. Geom. Aspects 
Funct. Anal. 2256, 71–97 (2020) 

5. S.G. Bobkov, F. Götze, Concentration inequalities and limit theorems for randomized sums. 
Probab. Theory Relat. Fields 137(1–2), 49–81 (2007) 

6. S.G. Bobkov, G.P. Chistyakov, F. Götze, Second-order concentration on the sphere. Commun. 
Contemp. Math. 19(5), 1650058, 20pp. (2017) 

7. S.G. Bobkov, G.P. Chistyakov, F. Götze, Gaussian mixtures and normal approximation for V. 
N. Sudakov’s typical distributions. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov.



128 S. G. Bobkov et al.

(POMI) 457 (2017). Veroyatnost i Statistika. 25, 37–52; reprinted in J. Math. Sci. (N.Y.) 238 
(2019), no. 4, 366–376 

8. S.G. Bobkov, G.P. Chistyakov, F. Götze, Berry-Esseen bounds for typical weighted sums. J. 
Electron. Probab. 23(92), 1–22 (2018) 

9. S.G. Bobkov, G.P. Chistyakov, F. Götze, Normal approximation for weighted sums under a 
second order correlation condition. Ann. Probab. 48(3), 1202–1219 (2020) 

10. S.G. Bobkov, G.P. Chistyakov, F. Götze, Poincaré-type inequalities and normal approximation 
for weighted sums. Electron. J. Probab. 25, 155, 31 pp. (2020) 

11. S.G. Bobkov, G.P. Chistyakov, F. Götze, Concentration and Gaussian Approximation for 
Randomized Sums. Probability Theory and Stochastic Modelling, vol. 104 (Springer Cham, 
2023), 434 pp. 

12. S. Brazitikos, A. Giannopoulos, P. Valettas, B.-H. Vritsiou, Geometry of Isotropic Convex 
Bodies. Mathematical Surveys and Monographs, vol. 196 (American Mathematical Society, 
Providence, 2014). xx+594pp. 

13. A. Dvoretzky, J. Kiefer, J. Wolfowitz, Asymptotic minimax character of the sample distribution 
function and of the classical multinomial estimator. Ann. Math. Stat. 27, 642–669 (1956) 

14. L. Goldstein, G. Reinert, Stein’s method and the zero bias transformation with application to 
simple random sampling. Ann. Appl. Probab. 7(4), 935–952 (1997) 

15. R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a 
localization lemma. Discrete Comput. Geom. 13, 541–559 (1995) 

16. S. Kaczmarz, G. Steinhaus, Theory of Orthogonal Series (Warszawa, Lwow, 1935); Russian 
ed.: Izdat. Fiz.-Mat. Lit., Moscow, 1958, 507pp. 

17. B.S. Kashin, A.A Saakyan, Orthogonal Series. Translated from the Russian by Ralph P. Boas. 
Translation edited by Ben Silver. Translations of Mathematical Monographs, vol. 75 (American 
Mathematical Society, Providence, 1989), xii+451pp. 

18. B. Klartag, A Berry-Esseen type inequality for convex bodies with an unconditional basis. 
Probab. Theory Relat. Fields 145(1–2), 1–33 (2009) 

19. B. Klartag, J. Lehec, Bourgain’s slicing problem and KLS isoperimetry up to polylog (2022). 
arXiv:2203.15551v2 

20. B. Klartag, S. Sodin, Variations on the Berry-Esseen theorem. Teor. Veroyatn. Primen. 56(3), 
514–533 (2011); Reprinted in: Theory Probab. Appl. 56 (2012), no. 3, 403–419 

21. M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de 
Probabilités XXXIII. Lecture Notes in Mathematics, vol. 1709 (Springer, Berlin, 1999), pp. 
120–216 

22. P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 
18(3), 1269–1283 (1990) 

23. V.V. Petrov, Sums of Independent Random Variables. Translated from the Russian by A. A. 
Brown. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82 (Springer, New York, 
1975), x+346pp. 

24. V.V. Petrov, Limit Theorems for Sums of Independent Random Variables (in Russian) (Nauka, 
Moscow, 1987), 318pp. 

25. R. Salem, A. Zygmund, On lacunary trigonometric systems. Proc. Nat. Acad. Sci. USA 33, 
333–338 (1947) 

26. R. Salem, A. Zygmund, On lacunary trigonometric series. II. Proc. Nat. Acad. Sci. USA 34, 
54–62 (1948) 

27. V.N. Sudakov, Typical distributions of linear functionals in finite-dimensional spaces of high 
dimension (in Russian). Soviet Math. Dokl. 19, 1578–1582 (1978); translation in: Dokl. Akad. 
Nauk SSSR, 243 (1978), no. 6, 1402–1405


	Asymptotic Expansions and Two-Sided Bounds in Randomized Central Limit Theorems
	1 Introduction
	2 Typical Distributions
	3 Upper Bound for the L2-Distance at Standard Rate
	4 General Approximations for the L2-Distance with Error of Order at Most 1/n
	5 Proof of Theorem 1.1 for the L2-Distance
	6 General Lower Bounds for the L2-Distance: Proof of Theorem 1.2
	7 Lipschitz Systems
	8 Berry-Esseen-Type Bounds
	9 Quantitative Forms of Sudakov's Theorem for the Kolmogorov Distance
	10 Proof of Theorem 1.1 for the Kolmogorov Distance
	11 Relations Between L1, L2 and Kolmogorov Distances
	12 Lower Bounds: Proof of Theorem 1.3
	13 Functional Examples
	14 The Walsh System; Empirical Measures
	15 Improved Rates for Lacunary Systems
	16 Improved Rates for Independent and Log-Concave Summands
	17 Improved Rates Under Correlation-Type Conditions
	References


